Extracting stem cells from fat for tissue regeneration

May 3, 2011

Stem cells extracted from body fat may pave the way for the development of new regenerative therapies including soft tissue reconstruction following tumor removal or breast mastectomy surgery, the development of tissue-engineered cartilage or bone, and the treatment of cardiovascular disease.

An interdisciplinary team of Queen's University researchers led by Dr. Lauren Flynn, a professor in the Departments of Chemical Engineering and Anatomy and Cell Biology, has been working with extracted from samples of human fat and is developing new methods in the lab to develop these cells into mature tissue substitutes.

While stem cells extracted from fat cannot be grown into as many different types of cells as , they do have a number of advantages.

"The advantages include less ethical controversy, abundant cell availability from discarded tissues from elective surgeries like breast reductions and tummy tucks, and a much reduced possibility for when re-implanting cells extracted from a person's own fat," explains Dr. Juares Bianco, a postdoctoral fellow in the Department of Chemical Engineering and the Human Mobility Research Centre (HMRC) who is working in the Flynn lab group.

Sarah Fleming, a Master's candidate in the group, is also working to establish a new method for growing the fat stem cells in the lab using a system that mimics the natural tissue environment found within the body. This work is based on Dr. Flynn's development of a technique for washing away all traces of cells from a sample of body fat, leaving behind a three-dimensional tissue scaffold that she calls "decellularized adipose tissue", or "DAT" for short.

This empty scaffold can then be used for soft tissue reconstruction or as a growing environment for the extracted stem cells. Dr. Flynn's preliminary studies have shown that when the stem cells are grown on the DAT scaffold, they naturally begin to mature into , suggesting that the engineered growth environment influences the type of cell that the basic stem cells will turn into during the tissue regeneration process.

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.