Stem cells reverse disease in a model of Parkinson's disease

In a new study to be published in the Journal of Clinical Investigation, researchers compared the ability of cells derived from different types of human stem cell to reverse disease in a rat model of Parkinson disease and identified a stem cell population that they believe could be clinically relevant.

led by Sang-Hun Lee, at Hanyang University, Republic of Korea, and Kwang-Soo Kim, at Harvard Medical School, Belmont, — has now compared the ability of cells derived from different types of human stem cell to reverse disease in a of Parkinson disease and identified a stem that they believe could be clinically relevant.

Parkinson disease results from the progressive loss of a specific subpopulation of nerve cells. Current treatments provide only relief from the symptoms of the disease and cannot reverse the nerve cell loss. Stem cells are considered by many to be promising candidate sources of cells to reverse nerve cell loss in individuals with Parkinson disease through their ability to regenerate and repair diseased tissues. There are two types of stem cell considered in this context: embryonic stem (ES) cells, which are derived from early embryos; and induced pluripotent stem (iPS) cells, which are derived by reprogramming cells of the body such that they have the ability to generate any cell type.

In turn, cells of the body can be reprogrammed to become iPS cells in one of two ways: the reprogramming proteins can be transferred directly into the cells (protein-based iPS cells) or viruses can be used to deliver to the cells the genetic information necessary for producing the reprogramming proteins (virus-based iPS cell). Lee, Kim, and colleagues found several problems with cells derived from virus-based human iPS cells that precluded their use in the Parkinson disease model but found that nerve cells derived from protein-based human iPS cells reversed disease when transplanted into the brain of rats modeling Parkinson disease. They therefore conclude that protein-based human iPS could be used in the treatment of individuals with Parkinson disease.

More information: www.jci.org/articles/view/4579… 972c7c1fb96f33f1d948

Provided by Journal of Clinical Investigation

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Cells derived from different stem cells: Same or different?

May 02, 2011

There are two types of stem cell considered promising sources of cells for regenerative therapies: ES and iPS cells. Recent data indicate these cells are molecularly different, raising the possibility that cells derived from ...

Stem cell first: Creating induced pluripotent stem cells

Aug 23, 2010

In a world first, Australian researchers have created induced pluripotent stem (iPS) cells from human skin without the use of viruses or genetic manipulation, an important step toward their eventual use in treating human ...

Recommended for you

UN says Syria vaccine deaths was an NGO 'mistake'

10 hours ago

The recent deaths of Syrian children after receiving measles vaccinations was the result of a "mistake" by a non-governmental partner who mixed in a muscle relaxant meant for anesthesia, a spokesman for the U.N. secretary-general ...

First US child dies from enterovirus D68

11 hours ago

A child in the northeastern US state of Rhode Island has become the first to die from an ongoing outbreak of a respiratory virus, enterovirus D68, health officials said Wednesday.

US Ebola patient had contact with kids: governor

11 hours ago

A man who was diagnosed with Ebola in virus in Texas came in contact with young children, and experts are monitoring them for any signs of disease, governor Rick Perry said Wednesday.

UN worker dies of suspected Ebola in Liberia

12 hours ago

The United Nations mission in Liberia announced on Wednesday the first suspected victim among its employees of the deadly Ebola epidemic ravaging the impoverished west African nation.

User comments