Students mimic blood flow in the lab

By Marcia Goodrich
A fibrin-coated wire in a well plate, covered with pink cell culture medium.

If by chance you should have a stent inserted in a clogged coronary artery, you can probably count on it staying around for a very long time. So it’s important to know what will happen to it.

“But there’s not a lot of information on exactly how degrade in the body,” said Patrick Bowen, who just completed his BS in Materials Science and Engineering at Michigan Technological University. What information there is, on stents and other devices that surgeons place inside us for our own good, has been derived from studies on large animals, which are expensive and time-consuming.

That information may now be more forthcoming. Bowen is part of an interdisciplinary Senior Design team that found a couple of new ways to replicate what happens to stents and other manmade things tucked inside our blood vessels.

First, the group implanted tiny wires in the aortas of rats and tracked what happened to the material. Over time, the wires became coated with a layer of calcium and phosphorus and then were gradually covered by a layer of cell tissue.

The students then concocted a mixture of fibrin (a protein involved in blood clotting) and a cell culture medium chemically similar to blood. Next they put iron and magnesium wires in the mix. “Then they subjected it to circulatory flow,” said Jeremy Goldman, an associate professor of biomedical engineering and the team’s co-advisor. “Essentially, we tried to place the candidate stent material into a simulated artery.”

The wires in the fibrin mixture corroded in exactly the same way as the wires in the rats. “In the past, in vivo and in vitro corrosion rates have always been different,” said Jaroslaw Drelich, an associate professor of materials science and engineering and the group’s other co-advisor. “These appear to be identical.”

If their slurry is as good a mimic as these initial tests suggest, the team’s work has major implications for scientists.

“The rat model could help reduce reliance on large animals. And the students’ in vitro model might make it possible to reduce the use of animals overall,” Goldman said.

In other words, said Bowen, “We could save a lot of pigs and rabbits, and companies could save a lot of money.”

The Senior Design team has been funded by Boston Scientific, a designer and manufacturer of implantable medical devices, including stents. In particular, they are investigating bioabsorbable stents, which would be gradually absorbed into the body over time. So far, the company has been impressed with the students’ efforts, said Goldman. “They’ve done cutting-edge work. For undergraduates to accomplish this shows a high level of effort and dedication.”

Their success has been due in great part to its interdisciplinary nature, Goldman added. “The project brought together our two departments in a very nice way,” he said.

Senior Design team members, in addition to Bowen, are Rebecca Franke, Judy Bryne, Ellen Pokorney, Jessica Rhadigan and Aaron Tauscher (Biomedical Engineering); and Jesse Gelbaugh ( and Engineering). The researchers expect to publish a number of papers on the project; two recent graduates, Daniel Pierson and Jacob Edick, are first and second author, respectively on a paper that has been submitted for publication in the Journal of Biomedical Materials Research B: Applied Biomaterials.

add to favorites email to friend print save as pdf

Related Stories

King of the (lunar) road

Mar 30, 2011

The University of Alabama in Huntsville’s moon buggy may not go from 0 to 60 in five seconds, but it can handle the lunar regolith like nobody’s business. And that’s no small feat, says mechanical ...

A new way to date old ceramics

Jan 10, 2011

(PhysOrg.com) -- If you are an archaeologist, determining when a pot was made is not just a matter of checking the bottom for a time stamp. Dating clay-based materials like ceramics recovered from archeological ...

Making lifesaving devices less life-threatening

Feb 16, 2011

Every year, more than half a million people in the United States undergo surgery for biomedical implants – like stents or heart valves – intended to save their lives, according to the American Heart ...

Humans more diverse than we allow

Mar 29, 2011

A question central to Gillian Einstein's research is, How can I do science that would not make essentialist assumptions about the body?

Recommended for you

Small RNAs in blood may reveal heart injury

3 hours ago

(Medical Xpress)—Like clues to a crime, specific molecules in the body can hint at exposure to toxins, infectious agents or even trauma, and so help doctors determine whether and how to treat a patient. ...

Researchers uncover clues to flu's mechanisms

7 hours ago

A flu virus acts like a Trojan horse as it attacks and infects host cells. Scientists at Rice University and Baylor College of Medicine have acquired a clearer view of the well-hidden mechanism involved.

User comments