Guiding light: how the brain gets wired for stereo vision

Guiding light: how the brain gets wired for stereo vision
Expression of the VEGF receptor NRP1 (red) on the axons of retinal ganglion cell neurons. The lens is green, blood vessels are yellow and nuclei containing DNA are blue. Credit: Laura Denti.

(Medical Xpress) -- Nerve cells that transmit light signals from the eye into the brain use a molecule best known for its role in blood vessel growth as a ‘stepping stone’ to help them reach the opposite brain hemisphere, according to research published in Neuron.

When light enters our , it passes through to the retina in the back of the eye, where it is converted to electrical signals that pass along nerve cells known as retinal . These ganglion cells follow a path into the brain, where they reach an area known as the optic chiasm. At this point, the path forks and the signal passes to both hemispheres of the brain - this is essential in order to create stereo vision, which allows us to see perspective.

However, until now, it has not been clear what guides the nerves to cross to the opposite side of the brain at the chiasm - why, for example, doesn't light from the right eye just pass to the right side of the brain rather than reaching to the left hemisphere?

The answer, according to Dr. Lynda Erskine from the University of Aberdeen and Dr. Christiana Ruhrberg, a Wellcome Trust New Investigator at UCL (University College London), is that a molecule known as VEGF164, which ordinarily plays a part in the growth of blood vessels, acts as a stepping stone, allowing nerve cells carrying images from each eye to cross the chiasm and reach the opposite hemisphere.

The researchers developed a mouse model that allowed them to track how the ganglion cells are wired during fetal development. In mice lacking VEGF164, the axons of many retinal ganglion cell neurons do not cross to the opposite hemisphere.

"We found that the nerves from the eye grow along a path strewn with a small molecule that plays an important role in the growth and development of blood vessels," says Dr. Ruhrberg. "This provides an interesting insight into the development of stereo vision, which relies on the balanced growth of axons from each eye into both hemispheres. We did not expect to find that in the eye co-opt essential for to guide them to their destination."

More information: Erskine L et al. VEGF signalling through neuropilin 1 guides commissural axon crossing at the optic chiasm. Neuron 2011;70(5):951-65

Related Stories

Immune cells help heal eye injury in mice

Jan 10, 2011

A paper published online on January 10 in the Journal of Experimental Medicine reports that retinal ganglion cells—neurons in the eye—are rescued by immune cells that infiltrate the mouse retina after eye injury ...

Scientists reveal secret of girl with 'all seeing eye'

Jul 20, 2009

(PhysOrg.com) -- Scientists have discovered how a 10-year-old girl born with half a brain is able to see normally through one eye. The youngster, from Germany, has both fields of vision in one eye and is the ...

Cells in eye could help control sleep

Aug 18, 2008

(PhysOrg.com) -- A set of nerve cells in the eye control our levels of sleepiness according to the brightness of our surroundings, Oxford University researchers have discovered. The cells directly regulate ...

Shape encoding may start in the retina

Sep 12, 2007

New evidence from the University of Southern California suggests that there may be dedicated cells in the retina that help compile small bits of information in order to recognize objects. The research was conducted by Ernest ...

Recommended for you

New ALS associated gene identified using innovative strategy

10 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

11 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

11 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

15 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

15 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments