Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology

June 28, 2011
Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology
Confocal microscope image of neurons in the 3xTgAD mice stained for the amyloid-ß (Aß) precursor protein (APP) showing APP (green) within these nerve cells which were not labeled by antibodies that detect free Aß, the peptide cleavage product of APP that, when released from APP by proteases will be secreted and for Alzheimer plaques outside nerved cells in the brain of these mice similar to Alzheimer patients. Credit: Edward B. Lee, Perelman School of Medicine at the University of Pennsylvania

Increasingly, researchers are suggesting that amyloid plaques and neurofibrillary tangles may be relatively late manifestations in the course of Alzheimer's disease (AD) pathology. Identifying earlier events in the development of AD remains a challenge. The laboratory of Virginia M.-Y. Lee, PhD, director of the Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, was the first, in 1993, to demonstrate unequivocally the presence of A-beta peptides -- a hallmark of AD -- inside neurons. But their role in Alzheimer's disease remained unclear.

"It was exciting when a 'triple transgenic' mouse model of AD was reported in 2003 to show robust staining of cells interpreted as A-beta peptides inside neurons," says Edward Lee, MD, PhD, assistant professor of Pathology and Laboratory Medicine, co-author on a study just out in the that questions the role of A-beta peptides in AD pathology.

The triple transgenic mouse has since become a popular model in AD studies, says Edward Lee. In these mice, A-beta molecules were detected before amyloid-plaque and neurofibrillary-tangle pathology showed up, suggesting that intraneuronal A-beta peptides lead to , which then lead to neurofibrillary tangles inside neurons.

The Penn researchers examined the trajectory of neuronal inclusions over time using rigorous biochemical and genetic methods. Virginia Lee's group discovered a case of mistaken identity: The intraneuronal molecules appear not to be A-beta peptides themselves, but rather the A-beta nested within its parent protein, the A-beta . What's more, blocking A-beta peptides from forming in the triple had no effect on the formation of neurofibrillary tangles.

According to Virginia Lee, this finding is significant for Alzheimer drug development because it underlines the need for tau-focused drug discovery for AD since the idea that intracellular A-beta drives tangle formation was not substantiated. Therapies aimed at blocking A-beta production may not have any effect on tangle formation, which is consistent with human clinical trial data to date.

The role of intraneuronal A-beta in AD is still unclear, but these results have profound implications for studies of mechanisms of AD and for AD drug discovery since mouse models of presumptive intracellular A-beta are widely used, state the authors.

Please take a look at the Alzforum webinar about the debate on intraneuronal A-beta as a potential instigator of Alzheimer's disease: www.alzforum.org/res/for/journal/detail.asp?liveID=193

More information: Paper: www.jneurosci.org/content/31/21/7691.abstract

Related Stories

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.