Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology

June 28, 2011
Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology
Confocal microscope image of neurons in the 3xTgAD mice stained for the amyloid-ß (Aß) precursor protein (APP) showing APP (green) within these nerve cells which were not labeled by antibodies that detect free Aß, the peptide cleavage product of APP that, when released from APP by proteases will be secreted and for Alzheimer plaques outside nerved cells in the brain of these mice similar to Alzheimer patients. Credit: Edward B. Lee, Perelman School of Medicine at the University of Pennsylvania

Increasingly, researchers are suggesting that amyloid plaques and neurofibrillary tangles may be relatively late manifestations in the course of Alzheimer's disease (AD) pathology. Identifying earlier events in the development of AD remains a challenge. The laboratory of Virginia M.-Y. Lee, PhD, director of the Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, was the first, in 1993, to demonstrate unequivocally the presence of A-beta peptides -- a hallmark of AD -- inside neurons. But their role in Alzheimer's disease remained unclear.

"It was exciting when a 'triple transgenic' mouse model of AD was reported in 2003 to show robust staining of cells interpreted as A-beta peptides inside neurons," says Edward Lee, MD, PhD, assistant professor of Pathology and Laboratory Medicine, co-author on a study just out in the that questions the role of A-beta peptides in AD pathology.

The triple transgenic mouse has since become a popular model in AD studies, says Edward Lee. In these mice, A-beta molecules were detected before amyloid-plaque and neurofibrillary-tangle pathology showed up, suggesting that intraneuronal A-beta peptides lead to , which then lead to neurofibrillary tangles inside neurons.

The Penn researchers examined the trajectory of neuronal inclusions over time using rigorous biochemical and genetic methods. Virginia Lee's group discovered a case of mistaken identity: The intraneuronal molecules appear not to be A-beta peptides themselves, but rather the A-beta nested within its parent protein, the A-beta . What's more, blocking A-beta peptides from forming in the triple had no effect on the formation of neurofibrillary tangles.

According to Virginia Lee, this finding is significant for Alzheimer drug development because it underlines the need for tau-focused drug discovery for AD since the idea that intracellular A-beta drives tangle formation was not substantiated. Therapies aimed at blocking A-beta production may not have any effect on tangle formation, which is consistent with human clinical trial data to date.

The role of intraneuronal A-beta in AD is still unclear, but these results have profound implications for studies of mechanisms of AD and for AD drug discovery since mouse models of presumptive intracellular A-beta are widely used, state the authors.

Please take a look at the Alzforum webinar about the debate on intraneuronal A-beta as a potential instigator of Alzheimer's disease: www.alzforum.org/res/for/journal/detail.asp?liveID=193

Explore further: Scientists identify 'missing link' in process leading to Alzheimer's disease

More information: Paper: www.jneurosci.org/content/31/21/7691.abstract

Related Stories

Compounds fend off Alzheimer's disease amyloid pathology

September 8, 2010

A team of scientists, led by University of California, San Diego School of Medicine researchers, has synthesized hundreds of new compounds with the potential of reducing the production of the A-beta 42 peptide, a primary ...

Asthma drug could help control or treat Alzheimer's disease

March 25, 2011

A drug used to treat asthma has been shown to help reduce the formation of amyloid beta, a peptide in the brain that is implicated in the development of Alzheimer's disease, according to researchers at Temple University's ...

Recommended for you

Amputees' brains remember missing hands even years later

August 30, 2016

Our brains have a detailed picture of our hands and fingers, and that persists even decades after an amputation, Oxford University researchers have found. The finding could have implications for the control of next generation ...

Brain's internal compass also navigates during imagination

August 30, 2016

When you try to find your way in a new place, your brain creates a spatial map that represents that environment. Neuroscientists from Radboud University's Donders Institute now show that the brain's 'navigation system' is ...

Special nerve cells cause goose bumps and nipple erection

August 29, 2016

The sympathetic nerve system has long been thought to respond the same regardless of the physical or emotional stimulus triggering it. However, in a new study from Karolinska Institutet published in the Nature Neuroscience, ...

A new window to understanding the brain

August 29, 2016

Scientists in recent years have made great strides in the quest to understand the brain by using implanted probes to explore how specific neural circuits work.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.