High-impact radiopeptide therapy halts neuroendocrine cancer

Research introduced at SNM's 58th Annual Meeting could be a sign of hope for patients with neuroendocrine cancer not responding well to standard therapies. Most radiotherapies use medical isotopes that emit beta radiation. The therapy in this study employs alpha particles, which have potential for higher potency. In fact, one single atom could be enough to kill an entire cancer cell.

"Until now, the usage of alpha radionuclides was limited to direct injection into the tumor or the use of only very small doses," says Clemens Kratochwil, MD, lead author of the study from the University of Heidelberg, Heidelberg, Germany, and the Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe, Germany. "This is the first patient study of dose escalation involving the injection of a specific tumor-targeted peptide tagged with an alpha-emitter. This provides additional options for patients with therapy-resistant cancers; further studies could expand the development and safe use of alpha-emitter therapies for patients with other forms of ."

Neuroendocrine cancer affects cells that translate neuronal information into hormonal information. Hormones and neuroendocrine control a range of physiological processes, including efficiency of digestion, , blood flow and the reproductive cycle. This type of cancer can therefore affect organs including the pancreas, the bowel, the and the lungs, among many others. Neuroendocrine cancer can go undetected for years and spread (metastasize) to other organs, especially the liver, bones and lymph nodes.

Standard therapy for neuroendocrine cancer is surgery and chemotherapy, as well as radiotherapy. Radiotherapy uses to kill by damaging their DNA. More targeted therapies come in the form of radioimmunotherapy and radiopeptide therapy, comprising a radionuclide bound or used in conjunction with an antibody or peptide that specifically targets the cancer tissue. A range of radionuclides, also known as , are used depending on the type of cancer, the kind of tumor and stage of disease. Most radiotherapies use beta-emitting particles, but more recently researchers have been conducting studies regarding the use of alpha-emitting particles, which have a very near-range and high-energy effect where administered. The benefit of alpha-therapy is its high cytotoxicity, or ability to kill cells—both cancerous and healthy cells. For this reason, scientists must test the safety of alpha-therapy and identify the most appropriate dose to avoid toxicity in normal tissues.

This study is focused on a cancer therapy called 213Bi-DOTATOC peptide receptor alpha-therapy. DOTATOC, as a tumor-targeting probe labeled with different radionuclides, has been under investigation in the University Hospital of Heidelberg for more than a decade. This peptide analog mimics the endocrine-system regulating hormone somatostatin. The latest advance for the treatment is the use of alpha-emitter 213 Bismuth, a radionuclide that is bound to DOTATOC and injected. Researchers administered the therapy to 14 patients with neuroendocrine liver metastases resistant to previous treatment with beta-particle peptide therapy. The therapy was found to be highly effective for targeting neuroendocrine tumors and inducing remission of metastases without dangerous toxicity to healthy tissues. Further studies are scheduled to escalate dosage further for even greater cancer-killing power for metastatic neuro-endocrine cancer patients. Additional alpha-emitter therapy studies are also continuing to determine their efficacy for treating other therapy-resistant cancers.

More information: Scientific Paper 29: C. Kratochwil, F. Giesel, A. Morgenstern, F. Bruchertseifer, W. Mier, C. Zechmann, C. Apostolidis, U. Haberkorn, University Hospital, Heidelberg, Germany; Institute for Transuranium Elements, European Commission JRC, Karlsruhe, Germany; "Regional 213Bi-DOTATOC peptide receptor alpha-therapy in patients with neuroendocrine liver metastases refractory to beta-radiation," SNM's 58th Annual Meeting, June 4-8, 2011, San Antonio, TX.

add to favorites email to friend print save as pdf

Related Stories

How prostate cancer packs a punch

Jul 12, 2010

Some types of prostate tumors are more aggressive and more likely to metastasize than others. Nearly one-third of these aggressive tumors contain a small nest of especially dangerous cells known as neuroendocrine-type cells. ...

Cell recycling protects tumor cells from anti-cancer therapy

Mar 06, 2008

Cells have their own recycling system: Discarded cellular components, from individual proteins through to whole cellular organs, are degraded and the building blocks re-used in a different place. The scientific term for this ...

Recommended for you

FOLFOXIRI plus bevacizumab ups outcome in metastatic CRC

13 seconds ago

(HealthDay)—For patients with untreated metastatic colorectal cancer, chemotherapy with fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) plus bevacizumab improves outcome versus fluorouracil, ...

Cancer exosome 'micro factories' aid in cancer progression

4 hours ago

Exosomes, tiny, virus-sized particles released by cancer cells, can bioengineer micro-RNA (miRNA) molecules resulting in tumor growth. They do so with the help of proteins, such as one named Dicer. New research from The University ...

User comments