Malaria vaccination strategy provides model for superior protection

June 15, 2011

Malaria is a devastating disease caused by the Plasmodium parasite which is transmitted to humans by infected mosquitoes. Hundreds of millions of new cases of malaria are reported each year, and there are more than 750,000 malaria-related deaths annually. As a result, there is an urgent need for vaccines to combat infection. Now, a new study uncovers a powerful strategy for eliciting an immune response that can combat the parasite during multiple stages of its complex life cycle and describes what may be the most effective next-generation vaccination approach for malaria. The research will be published online on June 15 by Cell Press in the journal Cell Host and Microbe.

When an infected mosquito bites a human, the parasite "sporozoite" stage is deposited in the skin. From there, it travels to the where it copies itself many times and matures for about a week into new forms that infect and cause the clinical symptoms of malaria. "Halting Plasmodium infection during the clinically silent liver stage represents an attractive goal of antimalarial vaccination, but is challenging because, if not complete, some parasites can get into the blood and cause disease," explains study co-author Dr. Stefan Kappe, from the Seattle Biomedical Research Institute. "Unfortunately, the complexity of the parasite and the diverse types of protection needed against malaria are the main reason why, despite decades of effort, no fully protective vaccine is ready for licensing"

Guiding the search for a better thus far has been the "gold-standard" of protection from Plasmodium: vaccination with radiation-attenuated sporozoites. Irradiating the parasites elicits extensive and random that arrests the parasite early in the liver and provides the immune system with an opportunity to develop an that can combat the native parasite. However, very high irradiated-sporozoites doses are needed to generate full liver-stage protection and there is no protection against blood stages. "In our study, we examined whether genetically attenuated parasites (GAP) generated by targeted gene deletions to stop replication late in liver-stage development were a better vaccine option," says co-author Dr. John Harty from the University of Iowa.

Using mouse malaria models, the researchers discovered that immunization with late-liver-stage-arresting GAP provided superior and long-lasting protection against liver-stage infection when compared with irradiated parasites or early-liver-stage arresting GAP. Importantly, late-liver-stage-arresting GAP also provided protection at the blood stage of infection and across different malaria parasite species, as well as by the route of immunization that can be used in humans. These findings suggest that weakening the parasite and arresting it as late in the liver as possible may have a powerful payoff, providing a large and diverse array of immune cells with optimal targets that are very effective for neutralizing the native parasite.

"Collectively, our data indicate that late-liver-stage-arresting GAP constitute a superior vaccination strategy. This underscores the potential utility of late-arresting GAP as broadly protective second-generation live-attenuated malaria vaccine candidates and a powerful model to find new parasite protein-based candidates that protect against infection in the liver and the blood," conclude Dr. Kappe and Dr. Harty.

Explore further: Malaria vaccine trials begin using 'chimpanzee virus'

Related Stories

Malaria vaccine trials begin using 'chimpanzee virus'

February 1, 2008

Trials are underway, funded by the Wellcome Trust, for a new vaccine to combat the most deadly form of malaria. For the first time ever, researchers will use a virus found in chimpanzees to boost the efficacy of the vaccine. ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.