New study identifies new potential approaches to treat myelofibrosis

June 23, 2011

(Medical Xpress) -- A new study conducted by a team of researchers at Boston University School of Medicine (BUSM) sheds light on a possible new approach to treat the bone marrow disease known as myelofibrosis by inhibiting an enzyme that connects extracellular fibers. The study, published online in the Journal of Biological Chemistry, was conducted under the direction of Katya Ravid, PhD, professor of medicine and biochemistry and director of the Evans Center for Interdisciplinary Biomedical Research at BUSM.

Myelofibroisis, which currently affects between 16,000 and 18,500 Americans, occurs when bone marrow is replaced by , resulting in a disruption in blood cell production.

Blood cells originate from precursor stem cells, which typically reside in the bone marrow. Red and are categorized as cells with a myeloid lineage, which also includes megakaryocytic cells that give rise to blood-clotting platelets. An excess proliferation of causes a surplus production of fibers outside of the cell, which forms a dense matrix within the bone marrow that disrupts the formation of these blood cells.

Previous research has shown that the enzyme lysyl oxidase links and stabilizes the extracellular fibers, but as of yet, a treatment aimed at inhibiting the formation of these fibers has not been successful. Ravid's team demonstrated that inhibiting that enzyme using pharmacologic agents resulted in a significant decrease in the burden of .

The team's investigation, which used a mouse model with a dense matrix, showed that while the megakaryotic cells that proliferate express high levels of lysyl oxidase, the normal, mature megakaryotic cells express scarce levels of the enzyme. The group also determined that lysyl oxidase boosts the proliferation of these cells, and also identified the mechanism that causes that to happen.

"This study uncovers a potential new approach aimed at controlling and treating myelofibrosis," said senior author Ravid. "This discovery will allow additional research in the field of leukemia to follow a new avenue with the potential of finding new treatments against the disease."

Explore further: Toward a more efficient therapy for a specific form of leukemia

Related Stories

Recommended for you

Anti-tumor antibodies could counter atherosclerosis, study finds

July 20, 2016

Investigators at the Stanford University School of Medicine have learned the signal that tumor cells display on their surfaces to protect themselves from being devoured by the immune system also plays a role in enabling atherosclerosis, ...

Technique uses 3-D weaving to grow a living hip replacement

July 18, 2016

With a goal of treating worn, arthritic hips without extensive surgery to replace them, scientists have programmed stem cells to grow new cartilage on a 3-D template shaped like the ball of a hip joint. What's more, using ...

A more powerful way to develop therapeutics?

July 21, 2016

A University of Toronto scientist has developed a new method for identifying the raw ingredients necessary to build 'biologics', a powerful class of medications that has revolutionized treatment of diseases like rheumatoid ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.