New study identifies new potential approaches to treat myelofibrosis

June 23, 2011

(Medical Xpress) -- A new study conducted by a team of researchers at Boston University School of Medicine (BUSM) sheds light on a possible new approach to treat the bone marrow disease known as myelofibrosis by inhibiting an enzyme that connects extracellular fibers. The study, published online in the Journal of Biological Chemistry, was conducted under the direction of Katya Ravid, PhD, professor of medicine and biochemistry and director of the Evans Center for Interdisciplinary Biomedical Research at BUSM.

Myelofibroisis, which currently affects between 16,000 and 18,500 Americans, occurs when bone marrow is replaced by , resulting in a disruption in blood cell production.

Blood cells originate from precursor stem cells, which typically reside in the bone marrow. Red and are categorized as cells with a myeloid lineage, which also includes megakaryocytic cells that give rise to blood-clotting platelets. An excess proliferation of causes a surplus production of fibers outside of the cell, which forms a dense matrix within the bone marrow that disrupts the formation of these blood cells.

Previous research has shown that the enzyme lysyl oxidase links and stabilizes the extracellular fibers, but as of yet, a treatment aimed at inhibiting the formation of these fibers has not been successful. Ravid's team demonstrated that inhibiting that enzyme using pharmacologic agents resulted in a significant decrease in the burden of .

The team's investigation, which used a mouse model with a dense matrix, showed that while the megakaryotic cells that proliferate express high levels of lysyl oxidase, the normal, mature megakaryotic cells express scarce levels of the enzyme. The group also determined that lysyl oxidase boosts the proliferation of these cells, and also identified the mechanism that causes that to happen.

"This study uncovers a potential new approach aimed at controlling and treating myelofibrosis," said senior author Ravid. "This discovery will allow additional research in the field of leukemia to follow a new avenue with the potential of finding new treatments against the disease."

Explore further: Molecule dictates how stem cells travel

Related Stories

Molecule dictates how stem cells travel

January 14, 2006

U.S. researchers have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production.

Protein key to control, growth of blood cells

August 13, 2008

New research sheds light on the biological events by which stem cells in the bone marrow develop into the broad variety of cells that circulate in the blood. The findings may help improve the success of bone marrow transplants ...

Preventing Prostate Cancer to Bone Metastasis

July 13, 2009

(PhysOrg.com) -- In new research on prostate cancer to bone metastasis, Dr. Phillip Trackman of Boston University Henry M. Goldman School of Dental Medicine explains that the lysyl oxidase pro-peptide (LOX-PP) inhibits prostate ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.