Researchers find potential new way to fight sepsis

By digging a little deeper, researchers may have found a potential target for reversing the deadly blood infection sepsis.

Scientists at the University of Michigan Health System looked at microRNA, a type of RNA that does not code for a protein itself but that can regulate the expression of other genes and proteins. They found that by attacking the right microRNA they could influence a key trigger of such as sepsis.

Traditionally, researchers have gone after a bigger target, attempting to find compounds that directly control inflammatory triggers such as , or IL-6.

"If you can connect all the dots, you can target a single microRNA and impact an like sepsis. But given the role of IL-6 in other diseases, we think this might have broader implications than sepsis for diseases where IL-6 plays a role," says study author Pavan Reddy, M.D., associate professor of hematology/oncology at the U-M Medical School.

Results of the study appear in the June 9 issue of Blood.

The researchers looked specifically at dendritic cells, specialized types of cells that are considered the first-responders in an immune response. Dendritic cells are also amongst the most important cells that turn on other . Using bioinformatics tools, the researchers identified two microRNAs within the dendritic cells that seemed most predominant in regulating IL-6. One, called miR-142-3p, was shown to have a direct link to regulating IL-6, and only IL-6.

The researchers were then able to specifically target miR-142-3p that would block it from influencing IL-6. They found in mice that doing this reduced deaths from sepsis.

"We showed that microRNAs have unique expression profiles in and that miR-142-3p has an important role in dendritic . This suggests targeting microRNAs may be a novel strategy for treating sepsis," says lead study author Yaping Sun, M.D., Ph.D., internal medicine research investigator at the U-M Medical School.

The researchers believe this approach will also hold potential for other inflammatory diseases such as juvenile rheumatoid arthritis, inflammatory bowel disease and graft-vs.-host disease, a frequent complication of bone marrow transplant. More research is needed before any treatments become available to patients.

More information: Blood, Vol. 117, No. 23, pp. 6172-6183, June 9, 2011

Related Stories

Immune system pathway identified to fight allergens, asthma

May 07, 2008

For the first time, researchers from the University of Pittsburgh School of Medicine have identified genetic components of dendritic cells that are key to asthma and allergy-related immune response malfunction. Targeting ...

Protein's new role discovered in autoimmune disease

Jan 02, 2008

Investigators at the University of Alabama at Birmingham (UAB) have identified the previously unknown role of a chemical 'messenger' leading to autoimmune disorders like rheumatoid arthritis and lupus.

Cancer drug shows promise against graft vs. host disease

Jul 10, 2008

A new University of Michigan study in mice suggests that a drug recently approved to fight cancer tumors is also able to reduce the effects of graft-versus-host disease, a common and sometimes fatal complication ...

Recommended for you

Student seeks to improve pneumonia vaccines

13 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

14 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments