Researchers find potential new way to fight sepsis

By digging a little deeper, researchers may have found a potential target for reversing the deadly blood infection sepsis.

Scientists at the University of Michigan Health System looked at microRNA, a type of RNA that does not code for a protein itself but that can regulate the expression of other genes and proteins. They found that by attacking the right microRNA they could influence a key trigger of such as sepsis.

Traditionally, researchers have gone after a bigger target, attempting to find compounds that directly control inflammatory triggers such as , or IL-6.

"If you can connect all the dots, you can target a single microRNA and impact an like sepsis. But given the role of IL-6 in other diseases, we think this might have broader implications than sepsis for diseases where IL-6 plays a role," says study author Pavan Reddy, M.D., associate professor of hematology/oncology at the U-M Medical School.

Results of the study appear in the June 9 issue of Blood.

The researchers looked specifically at dendritic cells, specialized types of cells that are considered the first-responders in an immune response. Dendritic cells are also amongst the most important cells that turn on other . Using bioinformatics tools, the researchers identified two microRNAs within the dendritic cells that seemed most predominant in regulating IL-6. One, called miR-142-3p, was shown to have a direct link to regulating IL-6, and only IL-6.

The researchers were then able to specifically target miR-142-3p that would block it from influencing IL-6. They found in mice that doing this reduced deaths from sepsis.

"We showed that microRNAs have unique expression profiles in and that miR-142-3p has an important role in dendritic . This suggests targeting microRNAs may be a novel strategy for treating sepsis," says lead study author Yaping Sun, M.D., Ph.D., internal medicine research investigator at the U-M Medical School.

The researchers believe this approach will also hold potential for other inflammatory diseases such as juvenile rheumatoid arthritis, inflammatory bowel disease and graft-vs.-host disease, a frequent complication of bone marrow transplant. More research is needed before any treatments become available to patients.

More information: Blood, Vol. 117, No. 23, pp. 6172-6183, June 9, 2011

Related Stories

Immune system pathway identified to fight allergens, asthma

May 07, 2008

For the first time, researchers from the University of Pittsburgh School of Medicine have identified genetic components of dendritic cells that are key to asthma and allergy-related immune response malfunction. Targeting ...

Protein's new role discovered in autoimmune disease

Jan 02, 2008

Investigators at the University of Alabama at Birmingham (UAB) have identified the previously unknown role of a chemical 'messenger' leading to autoimmune disorders like rheumatoid arthritis and lupus.

Cancer drug shows promise against graft vs. host disease

Jul 10, 2008

A new University of Michigan study in mice suggests that a drug recently approved to fight cancer tumors is also able to reduce the effects of graft-versus-host disease, a common and sometimes fatal complication ...

Recommended for you

Team untangles the biological effects of blue light

13 hours ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

13 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

User comments