Reproductive behavior of the silkmoth is determined by a single pheromone receptor protein

June 30, 2011

Pheromone preference, and the initiation of a complex programmed sexual behavior, is determined by the specificity of a single sex pheromone receptor protein expressed in a population of olfactory receptor neurons in the silkmoth (Bombyx mori). The study, which will be published on June 30th in the open-access journal PLoS Genetics, provides the first direct proof of the long-held belief that the control of sexual behavior in male moths originates in the chemical specificity of the pheromone receptor proteins expressed in pheromone receptor neurons.

Sex pheromones are found in a wide range of organisms. They serve as stimuli inducing behavioral responses in conspecifics (especially opposite-sex members of the same species). In most moth species, male moths depend on sex pheromones emitted by conspecific females to recognize and locate appropriate mating partners. Thus, behavioral preference of male moths for conspecific pheromones is a critical factor for successful reproduction. Although sex pheromone reportedly play a central role in sex pheromone detection and discrimination, the causal relationship between sex pheromone receptor specificity and behavioral preference remained to be proven.

The researchers, from The University of Tokyo, National Institute of Agrobiological Sciences, Fukuoka University, and Keio University, address this question using the silkmoth, which displays the simplest possible pheromone system, in which a single pheromone substance, bombykol, elicits full sexual behavior. They generated transgenic silkmoths which express a different sex pheromone receptor: PxOR1, of the diamondback moth (Plutella xylostella). Ectopic expression of PxOR1 elicited the same physiological and behavioral responses in the silkmoth when it was exposed to its specific ligand, which is a major sex pheromone component of the diamondback moth.

These results demonstrate not only that it is the specificity of the pheromone which controls the sexual behavior of male silkmoth, but that manipulation of the can turn silkmoths into detectors for essentially any odor for which a specific receptor can be made, due to the conspicuous orientation behavior and extremely high behavioral sensitivity of male silkmoths. The researchers note that it will now be necessary to ascertain the general validity of the results in more complex systems.

More information: Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, et al. (2011) A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori. PLoS Genet 7(6): e1002115. doi:10.1371/journal.pgen.1002115

Related Stories

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.