Ovarian cancer cells bully their way through tissue

June 14, 2011

A team led by Joan Brugge, the Louise Foote Pfeiffer Professor of Cell Biology at Harvard Medical School, recently shed light on how ovarian cancer spreads. In a paper published in the July edition of the journal Cancer Discovery, the newest journal of the American Association for Cancer Research, Brugge and colleagues found that ovarian cancer cells act like bullies, using brute force to plow their way through tissue and colonize additional organs.

"This is the first time that mechanical force has been implicated in the spread of ovarian cancer," says Brugge, who is also chair of the Department of Cell Biology. "While this research is still preliminary, we are building a foundation for the development of treatments based on a robust understanding of the disease."

According to the National Cancer Institute, ovarian cancer accounts for about three percent of all cancers among women in the United States. It caused nearly 14,000 deaths in 2010 alone.

The ovaries and many other organs, such as the liver, stomach and intestines, are located in an anatomical space called the peritoneal cavity. The lining of this cavity is called the peritoneum, and its top layer is called the mesothelium. After an ovarian tumor develops, clusters of cancer cells are released into the peritoneal cavity. Each cluster floats around until it encounters the lining of the cavity. It attaches to the lining, spreads out and launches an invasion into the mesothelium. Brugge's team determined how ovarian cancer cells get through the mesothelium to colonize organs on the other side.

When researchers placed ovarian cancer cells and mesothelial cells together in a dish, the cancer cells formed a hole in the mesothelial layer, mirroring behavior that would occur in the body as an invasion proceeds. The team interfered with molecular components of the cancer cells one by one and used time-lapse microscopy to watch the result. If the hole failed to form, the researchers knew that they'd discovered a critical player in the invasion process.

They identified three such players—integrin, talin and myosin, which are all proteins known to play a role in cell movement. Integrin sticks out from the cancer cells and grabs hold of scaffolding surrounding the mesothelium. Myosin, which is a motor, pulls on integrin via talin. As a result, the protruding cancer cells gain traction and can now force mesothelial cells out of the way.

"The cancer cells act like bullies," says first author Marcin Iwanicki, a postdoctoral researcher in Brugge's lab. "Instead of relying on a sophisticated biochemical process to achieve their goal, they simply push mesothelial cells apart."

"Eventually, it might be possible to prevent or reverse the invasion process," says Brugge. "We hope that our work will inform such treatments in the future."

Explore further: Gene's cancer role is identified

Related Stories

Gene's cancer role is identified

August 8, 2006

U.S. medical researchers say they've discovered a new cancer-promoting role for a gene potentially linked with breast, liver and other kinds of cancer.

Ovarian cancer stem cells identified, characterized

April 17, 2008

Researchers at Yale School of Medicine have identified, characterized and cloned ovarian cancer stem cells and have shown that these stem cells may be the source of ovarian cancer’s recurrence and its resistance to chemotherapy.

LIMK plays a key role in cancer metastasis

September 27, 2010

Researchers have shown that LIM kinase (LIMK), an important regulator of actin cytoskeleton dynamics, plays a key role in cancer metastasis. The study appears online on September 27 in The Journal of Cell Biology.

Tumors bring their own support cells when forming metastases

December 1, 2010

The process of metastasis requires that cancer cells traveling from a primary tumor find a hospitable environment in which to implant themselves and grow. A new study from Massachusetts General Hospital (MGH) Cancer Center ...

Recommended for you

Oxygen can impair cancer immunotherapy in mice

August 25, 2016

Researchers have identified a mechanism in mice by which anticancer immune responses are inhibited within the lungs, a common site of metastasis for many cancers. This mechanism involves oxygen inhibition of the anticancer ...

Stem cell propagation fuels cancer risk in different organs

August 25, 2016

The idea that stem cells - special cells that divide to repair and generate tissues - might be the major determinant of cancer risk has provoked great debate in the scientific community. Some researchers maintain that environmental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.