AMPK amplifies Huntington's disease

July 18, 2011

A new study describes how hyperactivation of AMP-activated protein kinase (AMPK) promotes neurodegeneration in Huntington's disease (HD). The article appears online on July 18, 2011, in The Journal of Cell Biology.

The aggregation of mutant in HD disrupts many , including metabolism. —a protein that balances a cell's energy production and usage—is abnormally active in the brains of mice with HD, but whether the kinase protects neurons from the metabolic imbalances associated with HD or whether AMPK contributes to neuronal death is unknown.

Yijuang Chern and colleagues determined that the alpha1 isoform of AMPK was specifically activated and translocated into the nuclei of neurons in a mouse model of HD, whereas AMPK-alpha2 was unaffected. An inhibitor of Ca2+/calmodulin-dependent II reduced AMPK activity, suggesting that AMPK-alpha1 is activated by this kinase, probably because Ca2+ signaling is disrupted in HD neurons.

Further stimulation of AMPK by injection of the AMPK-activating drug AICAR increased neuronal death and decreased the lifespan of HD mice. AICAR also promoted the death of neuronal cell lines, an effect reversed by an AMPK inhibitor. Active, nuclear AMPK-alpha1 promoted neuronal apoptosis by reducing expression of the cell survival factor Bcl2. Bcl2 levels and cell survival were restored by CGS21680, a drug that alleviates the symptoms of HD mice.

AMPK was also hyperactivated in the brains of human HD patients, suggesting that the kinase could be a therapeutic target. Chern now wants to investigate how AMPK-alpha1 and -alpha2 isoforms are differentially regulated in neuronal tissue.

Explore further: Power-boosting signal in muscle declines with age

More information: Ju, T.-C., et al. 2011. J. Cell Biol. doi:10.1083/jcb.201105010

Related Stories

Power-boosting signal in muscle declines with age

February 6, 2007

As people age, they may have to exercise even harder to get the benefits afforded to younger folk. That's the suggestion of a report in the February issue of the journal Cell Metabolism, published by Cell Press, showing that ...

Gene predicts heart attack response and cardiac damage

January 30, 2008

A protein has been found that influences the response of the heart to a lack of oxygen and blood flow, such as occurs during a heart attack, a team of Yale School of Medicine researchers report today in Nature.

Well-known enzyme is unexpected contributor to brain growth

March 12, 2009

An enzyme researchers have studied for years because of its potential connections to cancer, diabetes, heart disease, hypertension and stroke, appears to have yet another major role to play: helping create and maintain the ...

New way to lose fat, keep the lean

February 2, 2010

Researchers reporting in the February 3rd issue of Cell Metabolism may have a new way to trick the body into consuming more energy. The target in this case is an enzyme that indirectly controls the activity of what the researchers ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.