Study points to new means of overcoming antiviral resistance in influenza

UC Irvine researchers have found a new approach to the creation of customized therapies for virulent flu strains that resist current antiviral drugs.

Using powerful , UCI's Rommie Amaro and Robin Bush created a method to predict how pocket structures on the surface of influenza proteins promoting can be identified as these proteins evolve, allowing for possible pharmaceutical exploitation.

"Our results can influence the development of new drugs taking advantage of this unique feature," said Amaro, assistant professor of pharmaceutical sciences and computer science. The study appears online in Nature Communications.

The search for effective has always been hampered by the itself, which mutates from strain to strain, making it difficult to target with a specific pharmaceutical approach.

The most common clinical flu treatments are broad-based and only partially effective. They work by interrupting the action of an in the virus called neuraminidase, which plays a critical role in viral replication.

In 2006, scientists discovered that avian influenza neuraminidase exhibited a distinctive, pocket-shaped feature in the area pinpointed by clinically used drugs. They named it the 150-cavity.

Amaro and Bush, associate professor of ecology & evolutionary biology, conducted research at the San Diego Supercomputer Center and the National Institute for Computational Sciences to learn the conditions under which the pockets form.

They created molecular simulations of flu proteins to predict how these dynamic structures move and change and where and when the 150-cavity pockets will appear on the protein surface. This sequence analysis method could be utilized on evolving , providing vital information for drug design, Amaro said.

She added: "Having additional antivirals in our treatment arsenal would be advanta¬geous and potentially critical if a highly virulent strain – for exam¬ple, H5N1 – evolved to undergo rapid transmission among humans or if the already highly transmissible H1N1 pandemic virus was to develop resistance to existing antiviral drugs."

Provided by University of California - Irvine

not rated yet

Related Stories

Unusual flu vaccine is developed

Jun 14, 2006

U.S. scientists have used reverse genetics to develop an influenza virus with two key proteins on its surface derived from the H5N1 avian virus strain.

Virus hybridization could create pandemic bird flu

Feb 22, 2010

Genetic interactions between avian H5N1 influenza and human seasonal influenza viruses have the potential to create hybrid strains combining the virulence of bird flu with the pandemic ability of H1N1, according to a new ...

Recommended for you

Testing time for stem cells

1 hour ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

20 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments