Researchers identify how a gene linked to both Alzheimer's disease and type 2 diabetes works

Researchers at Mount Sinai School of Medicine have identified how a gene for a protein that can cause Type 2 diabetes, also possibly kills nerve cells in the brain, thereby contributing to Alzheimer's disease.

The gene, called SorCS1, controls the generation of amyloid-beta (Abeta) in the brain. Abeta plays a key role in the development of Alzheimer's disease. The researchers previously linked SorCS1 to Alzheimer's disease and identified where the molecules lived in the cell, but not how they control Abeta. The new data were presented today at the Alzheimer's Association's Annual International Conference in Paris.

Sam Gandy, MD, PhD, the Mount Sinai Professor in Alzheimer's Disease Research, Professor of Neurology and Psychiatry, and Associate Director of the Alzheimer's Disease Research Center at Mount Sinai School of Medicine, led the research team with Rachel Lane, PhD, a postdoctoral researcher in Dr. Gandy's lab.

The researchers determined various "traffic patterns" in the cell for the (APP) that makes Abeta and uncovered how much APP is converted into the toxic, and ultimately nerve-killing, Abeta. In some experiments Drs. Lane and Gandy altered the dose of the diabetes gene, SorCS1, and evaluated how that changed the "traffic pattern" that APP used to move around the cell and generate Abeta. In other experiments, Dr. Lane made small changes in the SorCS1 gene's and again saw dramatic changes in the "traffic pattern" of APP around the cell.

These data suggest that SorCS1 controls the movement of APP within the cell between areas where Abeta is readily made to areas where Abeta is not so easily made. In turn, the "traffic pattern" of influences the amount of Abeta being made by cells. The implication is that people with deficiencies in SorCS1 are at higher risk of developing Alzheimer's disease because their APP spends too much time in the region of the cell where APP is broken down to make the toxic Abeta.

"The great thing about studying SorCS1," said Dr. Gandy, "is that we already have entirely new ideas about how to treat both and . Our hunch is that SorCS1 also controls how the insulin receptor moves around the cell, but we have not yet proven that," he said. "With both diseases reaching epidemic proportions, this discovery is encouraging news that brings us one step closer to developing treatments."

Provided by The Mount Sinai Hospital

not rated yet

Related Stories

APP -- Good, bad or both?

Oct 18, 2009

New data about amyloid precursor protein, or APP, a protein implicated in development of Alzheimer's disease, suggests it also may have a positive role -- directly affecting learning and memory during brain development. So ...

Noncoding RNA may promote Alzheimer's disease

May 30, 2011

Researchers pinpoint a small RNA that spurs cells to manufacture a particular splice variant of a key neuronal protein, potentially promoting Alzheimer's disease (AD) or other types of neurodegeneration. The ...

Recommended for you

Student seeks to improve pneumonia vaccines

3 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

4 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

Engineering new bone growth

Aug 19, 2014

MIT chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold ...

User comments