Researchers describe genetic basis of rare human diseases

This is a cilia. Credit: UCSF

Researchers at the University of California, San Francisco and in Michigan, North Carolina and Spain have discovered how genetic mutations cause a number of rare human diseases, which include Meckel syndrome, Joubert syndrome and several other disorders.

The work gives doctors new possible targets for designing better diagnostics to detect and drugs to treat these diseases, which together affect perhaps one in 200 people in the United States.

On the surface, these diseases look very different. Meckel syndrome causes deadly brain malformations and kidney cysts. Joubert syndrome strikes people with severe movement disorders. But the work of the UCSF-led team, published this week in the journal Nature Genetics, found similarities between the diseases at the molecular level.

"We think these diseases have a common underlying cause," said UCSF developmental biologist Jeremy Reiter. "They are fundamentally caused by defects in 'antenna' on cells."

Seen in Twins from Bangladesh

Technically known as cilia, these are that dangle off cells and, like tiny receivers, allow the cells to explore and interact with their environment. Found everywhere from the brain to the eyes to the lungs in humans, these antennae also exist in creatures as diverse as gorillas, gnats, aardvarks and algae.

What cilia do depends on where they are in the body. In the eyes or deep within the nostrils, they are covered with sensory proteins and help capture light and odors, forming the basis of our senses of sight and smell. In the lungs, cilia move, helping to expel foreign particles from the airways. They also lend mobility to sperm.

This wide range of functions is also reflected in people with genetic disorders like Joubert syndrome, which affects cilia in specific parts of their body. People with these diseases suffer symptoms related to what those cilia do, such things as , infertility or inability to smell.

Reiter and his colleagues looked at the DNA of twins from Bangladesh born with Joubert syndrome, and they showed how certain mutations associated with the disease work.

They found that these mutations lead to malfunctions in a protein called Tectonic1, one of several that forms a crucial collar around the base of a cilium.

You can think of the collar as a turnstile at the foot of a long bridge connecting a remote island to the mainland. If the turnstile is damaged, traffic stops, and there is no way to drive goods and passengers out to the island.

Similarly, mutations in Tectonic1 prevent the collar from forming correctly, and this causes defects in the cilia within the brain and ultimately leads to Joubert syndrome, Reiter and his colleagues determined. In cells, they showed that restoring a non-mutated form of the protein restores the function of the cilia.

More information: "A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition" Nature Genetics. dx.doi.org/10.1038/ng.891

Related Stories

Scientists study cilia -- microscopic hair

May 05, 2006

Texas scientists studying microscopic hairs called cilia say they found an internal structure that's responsible for a cell's response to external signals.

Recommended for you

Science of romantic relationships includes gene factor

Nov 23, 2014

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.