'Megapixel' DNA replication technology promises faster, more precise diagnostics

UBC researchers have developed a DNA measurement platform that sets dramatic new performance standards in the sensitivity and accuracy of sample screening.

The advance could improve a range of genetic diagnostics and screenings where precise measurement is crucial--including the early detection of cancer, prenatal diagnostics, the detection of in , and the analysis of single cell .

The new digital (PCR) device uses liquid , rather than systems of microscopic valves, to partition into arrays of 1,000,000 chambers or more. The device enables the direct counting of single molecules isolated in individual chambers.

The density of reaction chambers achieved by the platform exceeds more traditional valve-based digital PCR techniques by a factor of 100, translating directly into improved performance.

"This solves some major technical issues that have limited the scale and accuracy of traditional digital PCR techniques," says Assistant Professor Carl Hansen with the UBC Department of Physics and Astronomy and Centre for High‐Throughput Biology. "It creates defect-free arrays of millions of uniform volume sub-reactions, and controls dehydration of these reactions during thermocycling."

PCR is an indispensable molecular biology technique used by researchers to amplify--or copy--a single piece of DNA millions or billions of times. The technique relies on repeated cycles of heating and cooling of the reaction to replicate segments of DNA using a protein called DNA polymerase, the same enzyme that copies DNA in living cells. PCR is used in medical and biology labs to clone DNA, analyze genes, detect hereditary disease, and in forensics.

The description of the 'megapixel' platform was published today in Nature Methods.

Digital PCR refers to a new generation of techniques that offer increased sensitively and density over the original technique, developed in 1983. The greatest number of chambers available in commercially available implementations of digital PCR, using integrated micro-valves, is 36,960. However, further scalability is limited by the maximum density at which valves may be reliably fabricated.

Hansen believes the new version or digital PCR can be scaled to hold up to approximately 10,000,000 chambers on a standard one inch format.

The UBC researchers also found the new 'megapixel' technique set new benchmarks in detecting rare mutations--defined as the lowest measurable ratio of two target sequences differing by a single nucleotide variation as well as new limits in the detection of subtle differences in sequence abundance.

Partitioning of a one million chamber array takes approximately one minute.

"Our solution, or something using the same techniques, could enable a new degree of precision in measurements in biomedical research and diagnostics. The dramatic increase in assay density has important implications for the adoption of digital PCR as an economical, fast and routine analytical tool," says Hansen.

More information: Paper online: dx.doi.org/10.1038/nmeth.1640

Related Stories

Toward a faster prenatal test for Down syndrome

Sep 18, 2007

Scientists in California are reporting an advance toward rapid testing for pre-natal detection of Down syndrome and other birth defects that involve an abnormal number of chromosomes.

Early detection of human papilloma and other viral infections

Oct 15, 2007

Scientists in Iowa are reporting development of a new, amazingly sensitive method for identifying the earliest stages of infection with human papilloma virus (HPV), a common virus that can increase the risk of cervical cancer ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

22 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments