The metabolic effects of antipsychotic drugs

July 12, 2011

Research to be presented at the upcoming annual meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, may explain why some antipsychotic drugs can promote overeating, weight gain, and insulin resistance.

Olanzapine, an atypical antipsychotic drug approved by the FDA for the treatment of schizophrenia and bipolar disorder, has been associated with body weight gain and impaired glucose homeostasis in humans and in experimental animals. As part of a Dutch research consortium, studies led by Simon Evers (University of Groningen, the Netherlands) sought to reveal underlying mechanisms for olanzapine's metabolic effects by studying healthy adult male volunteers. The research was motivated by observations of what co-author Anton Scheurink described as "a mysterious interaction between schizophrenia and diabetes."

Their results confirmed previous findings that olanzapine induces weight gain by increasing caloric intake, but also revealed that olanzapine reduces body temperature, which contributes to decreased energy expenditure. Indeed, reduced body temperature after olanzapine treatment may generate many of the known side effects of this antipsychotic drug. The authors' new findings also demonstrate that olanzapine alters peripheral , which may contribute to impaired . According to lead author Simon Evers, "Our research group believes that reduced body temperature is the foremost direct and consistent effect of olanzapine in humans and in experimental animals. Reduced body temperature might explain several of olanzapine's metabolic side effects, including increased food intake, reduced energy expenditure, sedation, , body weight gain, and ."

Related Stories

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.