Newly developed fluorescent protein makes internal organs visible

July 18, 2011
Newly developed fluorescent protein makes internal organs visible
Liver cells in this mouse contain the fluorescent protein iRFP. The mouse was exposed to near-infrared light, which has caused iRFP to emit light waves that are also near-infrared. The composite image shows these fluorescent near-infrared waves passing readily through the animal’s tissues to reveal its brightly glowing liver. (credit: Albert Einstein College of Medicine)

Researchers at Albert Einstein College of Medicine of Yeshiva University have developed the first fluorescent protein that enables scientists to clearly "see" the internal organs of living animals without the need for a scalpel or imaging techniques that can have side effects or increase radiation exposure.

The new probe could prove to be a breakthrough in whole-body imaging – allowing doctors, for example, to noninvasively monitor the growth of tumors in order to assess the effectiveness of anti-cancer therapies. In contrast to other body-scanning techniques, imaging does not involve or require the use of contrast agents. The findings are described in the July 17 online edition of Nature Biotechnology.

For the past 20 years, scientists have used a variety of colored fluorescent proteins, derived from jellyfish and corals, to visualize cells and their organelles and molecules. But using fluorescent probes to peer inside live mammals has posed a major challenge. The reason: hemoglobin in an animal''s blood effectively absorbs the blue, green, red and other wavelengths used to stimulate standard fluorescent proteins along with any wavelengths emitted by the proteins when they do light up.

To overcome that roadblock, the laboratory of Vladislav Verkhusha, Ph.D., associate professor of anatomy and structural biology at Einstein and the study''s senior author, engineered a fluorescent from a bacterial phytochrome (the pigment that a species of bacteria uses to detect light). This new phytochrome-based fluorescent protein, dubbed iRFP, both absorbs and emits light in the near-infrared portion of the electromagnetic spectrum – the spectral region in which mammalian The researchers targeted their fluorescent protein to the liver – an organ particularly difficult to visualize because of its high blood content. Adenovirus particles containing the gene for iRFP were injected into mice. Once the viruses and their gene cargoes infected liver cells, the infected cells expressed the gene and produced iRFP protein. The mice were then exposed to near-infrared light and it was possible to visualize the resulting emitted fluorescent light using a whole-body imaging device. Fluorescence of the liver in the infected mice was first detected the second day after infection and reached a peak at day five. (See accompanying image.) Additional experiments showed that the iRFP fluorescent protein was nontoxic.

"Our study found that iRFP was far superior to the other fluorescent proteins that reportedly help in visualizing the livers of live animals," said Grigory Filonov, Ph.D., a postdoctoral fellow in Dr. Verkhusha''s laboratory at Einstein, and the first author of the Nature Biotechnology paper. "iRFP not only produced a far brighter image, with higher contrast than the other fluorescent proteins, but was also very stable over time. We believe it will significantly broaden the potential uses for noninvasive whole-body imaging."

Dr. Filonov noted that fluorescent-protein imaging involves no radiation risk, which can occur with standard x-rays and computed tomography (CT) scanning. And unlike magnetic resonance imaging (MRI), in which contrasting agents must sometimes be swallowed or injected to make internal body structures more visible, the contrast provided by iRFP is so vibrant that contrasting agents are not needed.

Explore further: Jellyfish proteins assist in heart rhythm disorder research

More information: "Bright and stable near-infrared fluorescent protein for in vivo imaging," July 17 online edition of Nature Biotechnology

Related Stories

Jellyfish proteins assist in heart rhythm disorder research

September 2, 2016

Cell models from stem cells serve an ever-increasing role in research of cardiac dysfunction. Researchers at the Technical University of Munich (TUM) have succeeded in producing cells which offer new insights into properties ...

How the brain deals with limited sensory input

September 20, 2016

Suppose you woke up in your bedroom with the lights off and wanted to get out. While heading toward the door with your arms out, you would predict the distance to the door based on your memory of your bedroom and the steps ...

Cancer-detection device poised to save lives

September 1, 2016

The early detection of cancer through screening techniques such as mammograms saves thousands of lives annually. Yinfa Ma is out to save thousands more through an easier and less costly approach.

Recommended for you

Formaldehyde damages proteins, not just DNA

September 29, 2016

The capacity of formaldehyde, a chemical frequently used in manufactured goods such as automotive parts and wood products, to damage DNA, interfere with cell replication and cause cancer inspired new federal regulations this ...

Synthetic 3D-printed material helps bones regrow

September 28, 2016

A cheap and easy to make synthetic bone material has been shown to stimulate new bone growth when implanted in the spines of rats and a monkey's skull, researchers said Wednesday.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
not rated yet Jul 18, 2011
Very very impressive. I'm surprised there's not any negative consequences from the introduction of the fluorescent protein to the phenotype.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.