Treating obesity via brain glucose sensing

July 26, 2011

The past two decades have witnessed an epidemic spread of obesity-related diseases in Western countries. Elucidating the biological mechanism that links overnutrition to obesity could prove crucial in reducing obesity levels. In the July 26 issue of PLoS Biology, Dr. Dongsheng Cai and his research team at Albert Einstein College of Medicine describe a pathway that directs the brain to sense the body's glucose dynamics, and they find that a defect of this glucose sensing process contributes to the development of obesity and related disease. Importantly, the team also found that correction of this defect can normalize the whole-body energy balance and treat obesity.

The hypothalamus in the brain plays a key role in controlling energy and body weight balance. To maintain balance between and energy expenditure, the hypothalamus constantly gauges the whole-body's energy levels by sampling circulating hormones (e.g. insulin and leptin) as well as nutrients (e.g., glucose). Although we know quite a bit about the hormonal pathways in the hypothalamic regulation of feeding, the mechanisms for hypothalamic nutrient sensing are much less clear. Moreover, a causal link between a nutrient sensing defect and obesity remains to be established. The team led by Dr. Cai discovered a novel role of a protein complex, hypoxia-inducible factor (HIF), in hypothalamic glucose sensing and whole-body in mice.

HIF is a nuclear transcription factor which induces hypoxia response. When tissue is low, HIF is activated to promote cellular metabolic adaption and survival. Recent research has appreciated the involvement of HIF in the metabolism of . "However, an intriguing but unexplored question is whether HIF can be important for the regulation of whole-organism metabolism, and if so, which tissue and cells are responsible." says Cai, who is an expert in and metabolism.

Cai and his group examined HIF in the hypothalamus and, surprisingly, found that it can be activated by glucose and that this regulation was associated with appetite control in mice. In identifying the cellular and molecular basis, the team found that in response to glucose, HIF acts in a unique group of hypothalamic nutrient-sensing neurons to induce expression of POMC gene - a gene which has been known to play a key part in hypothalamic control of feeding and body weight. Most excitingly, the team demonstrated the therapeutic potential of targeting hypothalamic HIF to control obesity. By enhancing the hypothalamic HIF activity via gene delivery, mice become resistant to obesity despite the condition of nutritional excess.

"It was an exciting discovery," explains Cai, "Our study is the first to show that beyond its classical oxygen-sensing function in many cells, HIF in the hypothalamic neurons can sense glucose to control the whole-body balance of energy intake and expenditure which is critical for body weight homeostasis." Overall, this study reveals a crucial role for neuronal HIF in bridging the brain's glucose sensing with the brain's regulation of body weight and metabolic physiology. These findings also highlight a potential implication for developing neuronal HIF activators in treating and preventing obesity and related diseases.

Explore further: Researchers find link between brain molecule and obesity and diabetes

More information: Zhang H, Zhang G, Gonzalez FJ, Park S-m, Cai D (2011) Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation. PLoS Biol 9(7): e1001112. doi:10.1371/journal.pbio.1001112

Related Stories

Understanding cancer energetics

June 4, 2011

(Medical Xpress) -- It's long been known that cancer cells eat a lot of sugar to stay alive. In fact, where normal, noncancerous cells generate energy from using some sugar and a lot of oxygen, cancerous cells use virtually ...

Recommended for you

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

Tiny microscopes reveal hidden role of nervous system cells

April 28, 2016

A microscope about the size of a penny is giving scientists a new window into the everyday activity of cells within the spinal cord. The innovative technology revealed that astrocytes—cells in the nervous system that do ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.