PXR: A stepping stone from environmental chemical to cancer?

July 11, 2011

Several chemicals that can accumulate to high levels in our body (for example BPA and some pesticides) have been recently linked to an increased risk of cancer and/or impaired responsiveness to anticancer drugs. A team of researchers, led by Sridhar Mani, at Albert Einstein College of Medicine, New York, has now identified a potential mechanistic link between environmental exposure to these foreign chemicals (xenogens) and cancer drug therapy response and survival.

PXR is one protein by which cells (including tumor cells) can sense xenogens. In their study, Mani and colleagues determined that activation of PXR was sufficient to enhance the cancerous characteristics of human cell lines and primary human colon xenografted into immune system–deficient mice. Further analysis indicated FXR activation leads to colon cancer growth through the induction of the growth factor FGF19. The authors therefore suggest that it will be important to investigate further the extent to which the environment might play a role in tumor recurrence through PXR activation.

More information: View this article at: www.jci.org/articles/view/41514?key=d5f620785644dd3ba8e6

Related Stories

Recommended for you

Combination therapy can prevent cytostatic resistance

November 26, 2015

Researchers at Karolinska Institutet have found a new way of preventing resistance to cytostatics used in the treatment of cancers such as medulloblastoma, the most common form of malignant brain tumour in children. The promising ...

Forecasting the path of breast cancer in a patient

November 23, 2015

USC researchers have developed a mathematical model to forecast metastatic breast cancer survival rates using techniques usually reserved for weather prediction, financial forecasting and surfing the Web.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.