It's simple: increasing complexity of models does not necessarily increase their accuracy

Mathematical modeling of infectious diseases is an important tool in the understanding and prediction of epidemics. Knowledge of social interactions is used to understand how infectious diseases spread through populations and how to control epidemics. New research published in BMC Medicine shows that a model, which included dynamic information about the heterogeneity of contact length and rate of making new contacts, was as effective as a more complex model which included the order of contacts.

Data was collected over a two-day period, within the Socio Patterns project, which brings together researchers from Turin (Italy), Marseilles and Lyon (France). 405 people attending the 2009 Annual French Conference on Nosocomial Infections volunteered to wear radiofrequency identification device () which recorded face to face contacts (within a distance of 1-2m). Each day researchers recorded the number and duration of meetings between participants. Nearly 30,000 social contacts were recorded over the two days of the conference allowing dynamic networks to be constructed.

Three aggregations of this data set were used in a SEIR (Susceptible, Exposed, Infectious, Recovered) model of infection. The first (DYN) utilized dynamic and time-order specific data, the second (HET) retained of contacts but not the order of interactions, and the third (HOM) assumed that all interactions were random, homogeneous, and of the same length.

While it might be assumed that knowing the precise order of social contacts may help refine the model, the results from the first two scenarios, DYN and HET, were very similar producing a comparable number of infected individuals and taking the same time to reach peak infection. However, without enough data, the simplest scenario, HOM, estimated a larger number of infected people and therefore a more severe .

Dr Juliette Stehlé from Université de Marseilles concluded, "Adding real life data about the movement of people within social situations is important in refining computational models of how disease is spread. Our results have important implications for understanding the level of detail required needed to produce functional models and better models lead in turn to better anticipation, prevention, and management of emerging infection and epidemics."

More information: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees, Juliette Stehle, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Vittoria Colizza, Lorenzo Isella, Corinne Régis, Jean-Francois Pinton, Nagham Khanafer, Wouter Van den Broeck and Philippe Vanhems, BMC Medicine (in press)

Commentary: The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy? Sally Blower and Myong-Hyun Go, BMC Medicine (in press)

add to favorites email to friend print save as pdf

Related Stories

SARS: a model disease

Nov 21, 2007

A new model to predict the spread of emerging diseases has been developed by researchers in the US, Italy, and France. The model, described in the online open access journal BMC Medicine, could give healthcare professionals advanc ...

Recommended for you

Growing a blood vessel in a week

13 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

16 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments