Universal donor immune cells

July 25, 2011

One of the latest attempts to boost the body's defenses against cancer is called adoptive cell transfer, in which patients receive a therapeutic injection of their own immune cells. This therapy, currently tested in early clinical trials for melanoma and neuroblastoma, has its limitations: Removing immune cells from a patient and growing them outside the body for future re-injection is extremely expensive and not always technically feasible.

Weizmann Institute scientists have now tested in mice a new form of adoptive cell transfer, which overcomes these limitations while enhancing the tumor-fighting ability of the transferred cells. The research, reported recently in Blood, was performed in the lab of Prof. Zelig Eshhar of the Institute's Immunology Department, by graduate student Assaf Marcus and lab technician Tova Waks.

The new approach should be more readily applicable than existing adoptive cell transfer treatments because it relies on a donor pool of immune T cells that can be prepared in advance, rather than on the patient's own cells. Moreover, using a method pioneered by Prof. Eshhar more than two decades ago, these T cells are outfitted with that specifically seek out and identify the tumor, thereby promoting its destruction.

In the study, the scientists first suppressed the of mice with a relatively mild dose of radiation. They then administered a controlled dose of the modified donor T cells. The mild suppression temporarily prevented the donor T cells from being rejected by the recipient, but it didn't prevent the cells themselves from attacking the recipient's body, particularly the tumor. This approach was precisely what rendered the therapy so effective: The delay in the rejection of the donor T cells gave these cells sufficient opportunity to destroy the tumor.

If this method works in humans as well as it did in mice, it could lead to an affordable cell transfer therapy for a wide variety of cancers. Such therapy would rely on an off-the-shelf pool of donor equipped with receptors for zeroing in on different types of cancerous cells.

Explore further: Scientists create new cloning method

Related Stories

Scientists create new cloning method

October 4, 2006

U.S. scientists say they have achieved a one-step somatic cell nuclear transfer procedure using a differentiated cell as a nuclear donor.

Drug/radiation combo may help shrink established tumors

August 25, 2008

Researchers may be closer to understanding why anti-cancer drugs such as Ipilimumab, which boost the tumor-killing power of immune cells, haven't fared well in clinical trials. The new study, which describes a way to enhance ...

Stem cell breakthrough: Bone marrow cells are the answer

January 28, 2010

Using cells from mice, scientists from Iowa and Iran have discovered a new strategy for making embryonic stem cell transplants less likely to be rejected by a recipient's immune system. This strategy, described in a new research ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.