Aggressive drug therapy aids superbug evolution

August 3, 2011

New research raises troubling concerns about the use of aggressive drug therapies to treat a wide range of diseases such as MRSA, C. difficile, malaria, and even cancer.

"The universally accepted strategy of aggressive medication to kill all targeted disease pathogens has the problematic consequence of giving any drug-resistant that are present the greatest possible evolutionary advantage," says Troy Day, one of the paper's co-authors and Canada Research Chair in Mathematical Biology at Queen's.

The researchers note that while the first aim of a drug treatment program should be to make and keep a patient healthy, the patient's immune system also has to be allowed to work.

They suggest several strategies to address the challenge of drug-resistant pathogens including improving the current knowledge base, discovering effective ways for slowing the spread of drug-resistant pathogens from person-to-person, and developing strategies for preventing drug-resistant mutations from occurring in the first place.

Last century's malaria wonder drug, chloroquine, is a perfect example of aggressive medication leading to the growth of drug-resistant pathogens. Since drug-resistant malarial parasites didn't have to compete with parasites that were killed off by an aggressive chloroquine treatment plan, the resistant parasites were given an evolutionary advantage. As a treatment for , is now useless across most of Africa.

"As things currently stand, no research exists that can tell us what the optimal strategy would be for maintaining treatment effectiveness and mitigating the evolution of resistance," says Dr. Day. "While overwhelming medicinal force may sometimes be required, we need to be clear about when and why this strategy should be chosen since it brings with it some very clear problems with respect to resistance evolution."

Explore further: Slowing the spread of drug-resistant diseases is goal of new research area

Related Stories

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.