Out of body experience for stem cells may lead to more successful transplants

New research finds that growing blood stem cells in the laboratory for about a week may help to overcome one of the most difficult roadblocks to successful transplantation, immune rejection. The study, published by Cell Press in the August issue of the journal Cell Stem Cell, may lead to more promising therapeutic strategies for transplanting blood stem cells.

Hematopoietic stem cells (HSCs) are cells that can give rise to all of the different types of blood cells. Transplantation of HSCs has been used to treat leukemia, lymphoma, and other types of cancer, as well as some . However, there is a significant risk that the transplanted cells will fail to be incorporated into the host, or that the new cells will be rejected by the immune system and the patient will develop life-threatening "graft-versus-host" disease. Although scientists have identified some causes of transplant failure, many questions remain unanswered. "The resolution of these questions will promote the understanding of the immunology of blood-forming stem cells and other stem cells and greatly improve the practice of transplantation," explains senior study author, Dr. Cheng Cheng Zhang from the University of Texas Southwestern Medical Center.

Dr. Zhang and colleagues had previously shown that they could successfully grow isolated mouse and human HSCs in the laboratory for transplantation and that there was a change in many of the proteins expressed on the surface of the cells. The researchers wondered whether this 'out of body experience' might change the functional properties of the cells as well and make them better suited for transplantation. They were specifically interested in clinically relevant "allogeneic" transplants, transplants between individuals who are genetically different, including siblings and unrelated donor/recipient pairs. Dr. Zhang's group transplanted freshly isolated HSCs or HSCs that were grown in the lab into mice and discovered that the HSCs that spent about a week growing in the lab were less likely to be rejected and more likely to be successfully incorporated into the recipient's blood.

The researchers went on to look at the mechanism that underlies this effect, and found that the lab-grown HSCs started to produce a specific immune system inhibitor on their surface that contributed to the improved transplantation efficiency. "This work should shed new light on understanding the immunology of HSCs and other and may lead to development of novel strategies for successful allogeneic transplantation of human patients," concludes Dr. Zhang. "If donor human HSCs can be expanded in culture and engraft non-matched or low-matched patients without graft-versus-host disease, this strategy will possibly lead to an ultimate solution to problems in allogeneic transplantation."

Related Stories

Protein key to control, growth of blood cells

date Aug 13, 2008

New research sheds light on the biological events by which stem cells in the bone marrow develop into the broad variety of cells that circulate in the blood. The findings may help improve the success of bone marrow transplants ...

Tackling blood stem cell heterogeneity

date Apr 26, 2010

Distinct populations of hematopoietic stem cells (HSCs) that preferentially generate specific types of blood cells can be identified based on abundance of a single surface protein, according to a study published online on ...

Recommended for you

A high-fat diet may alleviate mitochondrial disease

date 1 hour ago

Mice that have a genetic version of mitochondrial disease can easily be mistaken for much older animals by the time they are nine months old: they have thinning grey hair, osteoporosis, poor hearing, infertility, ...

Cheek muscles hold up better than leg muscles in space

date 1 hour ago

It is well known that muscles need resistance (gravity) to maintain optimal health, and when they do not have this resistance, they deteriorate. A new report published in the July 2015 issue of The FASEB Journal, however, sugges ...

Sialic acid: A key to unlocking brain disorders

date 4 hours ago

A new report published in the July 2015 issue of The FASEB Journal suggests that a common molecule found in higher animals, including humans, affects brain structure. This molecule may play a significant role in how brain ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.