Study identifies chemical changes in brains of people at risk for Alzheimer's disease

August 24, 2011

A brain imaging scan identifies biochemical changes in the brains of normal people who might be at risk for Alzheimer's disease, according to research published in the August 24, 2011, online issue of Neurology, the medical journal of the American Academy of Neurology.

The study of 311 people in their 70s and 80s with no , from the population-based Mayo Clinic Study of Aging, used an advanced imaging technique called proton MR spectroscopy to see if they had abnormalities in several brain metabolites that may be biomarkers for Alzheimer's disease. They also had to assess the level of amyloid-beta deposits, or plaques, in the brain that are one of the first signs of changes in the brain due to Alzheimer's disease. The participants were also given tests of memory, language and other skills.

"There is increasing evidence that Alzheimer disease is associated with changes in the brain that start many years before symptoms develop," said Jonathan M. Schott, MD, of the Research Centre, University College London in England and a member of the American Academy of Neurology, who wrote an editorial accompanying the study. "If we could identify people in whom the disease process has started but symptoms have not yet developed, we would have a potential window of opportunity for new treatments—as and when they become available—to prevent or delay the start of memory loss and cognitive decline."

The study found that 33 percent of the participants had significantly high levels of amyloid-beta deposits in their brains. Those with high levels of amyloid-beta deposits also tended to have high levels of the brain metabolites myoinositol/creatine and choline/creatine. People with high levels of choline/creatine were more likely to have lower scores on several of the cognitive tests, regardless of the amount of amyloid-beta deposits in their brains.

"This relationship between amyloid-beta deposits and these metabolic changes in the brain are evidence that some of these people may be in the earliest stages of the disease," said study author Kejal Kantarci, MD, MSc, of the Mayo Clinic in Rochester, Minn., and a member of the American Academy of Neurology. "More research is needed that follows people over a period of years to determine which of these individuals will actually develop the disease and what the relationship is between the amyloid deposits and the ." At the present time, MR spectroscopy cannot be used for diagnosis.

Related Stories

Recommended for you

Neuroscience study supports 200-year old art theory

September 19, 2016

A pilot study from a group of Dutch scientists implies that being told that an image is an artwork automatically changes our response, both on a neural and behavioural level. This may mean that our brains automatically up- ...

Human neuron transplants treat spinal cord injury in mice

September 23, 2016

Chronic pain and loss of bladder control are among the most devastating consequences of spinal cord injury, rated by many patients as a higher priority for treatment than paralysis or numbness. Now a UC San Francisco team ...

'Sixth sense' may be more than just a feeling

September 22, 2016

With the help of two young patients with a unique neurological disorder, an initial study by scientists at the National Institutes of Health suggests that a gene called PIEZO2 controls specific aspects of human touch and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.