Researchers identify a target that could combat allergies of early childhood

August 14, 2011
Allergic inflammation in the mouse lung. Activated airway epithelial cells (green) and alternatively activated macrophages (red) are visualized by immuno-fluorescent staining of histologic sections. Credit: Meera Nair, PhD Mark Siracusa, PhD and David Artis, PhD, Perelman School of Medicine, University of Pennsylvania

A pandemic of ailments called the "allergic march" -- the gradual acquisition of overlapping allergic diseases that commonly begins in early childhood -- has frustrated both parents and physicians. For the last three decades, an explosion of eczema, food allergies, hay fever, and asthma have afflicted children in the United States, the European Union, and many other countries.

What causes the march and how to derail it has remained elusive. Now, in this week's Nature, David Artis, PhD, an associate professor of Microbiology at the Perelman School of Medicine at the University of Pennsylvania, and a team of collaborating international scientists, identified that expression of the protein TSLP may influence susceptibility to multiple by regulating the of basophils, an uncommon type of white blood cell. Specifically, TSLP elicits the maturation of a population of distinct basophils that promotes .

"A fundamental question regarding the allergic march is if a child has , for example, which is associated with TSLP production in , why would some of those children subsequently be more susceptible to other allergic diseases at different sites of the body such as the gut or the lung?" asks Artis. "Although we have known that TSLP is associated with allergic diseases for many years, how this biological messenger might influence multiple allergic diseases has been a puzzle."

The origins of the present study lie in previous reports that showed that different versions of the gene encoding TSLP, an inflammation-producing cytokine, are associated with increased susceptibility to multiple allergic disorders, and that exaggerated TSLP production is associated with asthma, eczema, and food allergies in children. Together, these studies indicate that TSLP could be a critical regulator of multiple cytokine-associated allergic .

In this new report, mice overexpressing TSLP developed allergic inflammation in their lungs, skin, and gut that was associated with very high levels of basophils. "The critical findings are that TSLP appears to activate the development and maturation of early-stage basophils in the bone marrow and that TSLP elicits a distinct type of basophil," explains first author Mark Siracusa, PhD, a Ruth L. Kirschstein National Research Service Fellow in the Artis lab. Based on these findings, the researchers speculate that this basophil maturation could promote allergic reactions at multiple tissue sites.

To translate these findings to patient populations, Artis and colleagues teamed up with a group of pediatricians at the Children's Hospital of Philadelphia to examine basophil responses in children that suffer from the food allergy-associated disease, eosinophilic esophagitis, which causes inflammation of the esophagus. Previous studies have shown that TSLP is overexpressed in food allergy patients. The team showed in the Nature paper that in children with food allergies basophils exhibited a different molecular make-up compared to non-allergy patients.

"It's promising that after more than 130 years since basophils were first discovered by Paul Ehrlich in Germany, we are still finding out new things about this cell population that could help in the design of new drugs to prevent or better fight allergic diseases," concludes Artis.

With more than 50 percent of Americans estimated to suffer from at least one allergic disease, says Artis, the team is hoping that targeting TSLP and basophils may offer new therapies for multiple allergic diseases.

Explore further: Novel study finds proton channels inhibit the release of histamine during allergic reactions

Related Stories

Identified: Switch that turns on allergic disease in people

January 20, 2010

A new study in human cells has singled out a molecule that specifically directs immune cells to develop the capability to produce an allergic response. The signaling molecule, called thymic stromal lymphopoietin (TSLP), is ...

Food allergy-related disorder linked to master allergy gene

March 7, 2010

Scientists have identified a region of a human chromosome that is associated with eosinophilic esophagitis (EoE), a recently recognized allergic disease. People with EoE frequently have difficulty eating or may be allergic ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.