Defect in A20 gene expression causes rheumatoid arthritis

August 16, 2011

Researchers from VIB (Flanders Institute for Biotechnology) and Ghent University have shown that a defective gene can contribute to the onset of rheumatoid arthritis, an often-crippling inflammation of the joints that afflicts about 1% of the world's population. Until now, the underlying molecular mechanism of the disease was largely unclear. In the study, published in Nature Genetics, the researchers demonstrate that a cell-specific defect in the expression of the A20 gene (TNFAIP3) can contribute to the development of rheumatoid arthritis in mice, thereby identifying A20 as a possible target for the generation of new drugs.

Rheumatoid arthritis (RA) is a chronic progressive joint disease that starts with the inflammation of the synovial membrane and around the joints, but often spreads to cartilage and bones. The disease is very painful for the patient. Although the cause of remains unknown, autoimmunity plays a crucial role. Currently, the progression of the disease can be slowed down, but RA cannot be cured.

A20 is an intracellular negative regulator of the NF-kB transcription factor, which plays a key role in the generation of the inflammatory response. Excessive activation of NF-kB can lead to a whole range of , including arthritis. The research group of Rudi Beyaert investigates the molecular mechanisms that control NF-kB activation and earlier in vitro research already indicated a key role for A20. Moreover, genome-wide association studies in humans recently suggested that defects in A20 could contribute to several , including RA.

VIB researchers led by Geert van Loo and Rudi Beyaert at Ghent University have developed mice with myeloid cells incapable of producing A20. In collaboration with Dirk Elewaut, rheumatologist at Ghent University Hospital (Ghent University), who co-supervised the research, they found that these mice had elevated levels of pro-inflammatory cytokines in their blood and joints, and spontaneously developed RA with severe inflammation and osteoporosis. Interestingly, the arthritis in this mouse model was not dependent on TNF, a cytokine that normally plays an essential role in many inflammatory diseases including RA. On the other hand, they were able to demonstrate a role for IL-6 and Toll-like receptor 4 (TLR4).

The study confirms the crucial role of A20 in the control of inflammatory responses and shows that a defect in A20 in can give rise to RA that is not responsive to anti-TNF treatment. From a therapeutic perspective, this is a very important finding, since anti-TNF therapy fails in 30% of RA patients. The A20-deficient mice are therefore an interesting new mouse model for the study of new therapeutics for RA.

In collaboration with Bart Lambrecht (Ghent University Hospital, Ghent University), the VIB researchers recently demonstrated that mice lacking A20 in dendritic cells, a specific myeloid cell type, also develop an autoimmune pathology that in this case shows more similarities with systemic lupus erythematosus, which is characterized by acute and chronic inflammation of various tissues of the human body (Kool et al., Immunity 2011).

Related Stories

Recommended for you

How our cells use mother's and father's genes

September 28, 2016

Researchers at Karolinska Institutet and Ludwig Institute for Cancer Research have characterized how and to what degree our cells utilize the gene copies inherited from our mother and father differently. At a basic level ...

Questions, concerns about 'three-parent' baby

September 28, 2016

The surprise announcement that a healthy baby boy was born from a new technique mixing the DNA of two women and a man raises as many questions—scientific and ethical—as it settles, experts said Wednesday.

Regulatory RNA essential to DNA damage response

September 26, 2016

Stanford researchers have found that a tumor suppressor known as p53 is stabilized by a regulatory RNA molecule called DINO. The interaction helps a cell respond to DNA damage and may play a role in cancer development and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.