Novel control of Dengue fever

The spread of Dengue fever in northern Australia may be controlled by a bacterium that infects mosquitoes that harbor the virus, Australian and U.S. researchers report Aug. 25 in two papers published in the journal Nature.

The result grew out of work more than 20 years ago by population biologist Michael Turelli, professor of evolution and ecology at UC Davis, and Ary Hoffmann, now at the University of Melbourne, Australia, who are among the coauthors of one of the new Nature papers.

Turelli and Nick Barton of the Institute of Science and Technology, Austria, also describe the mathematical basis of the elimination project in a paper to be published in the journal in September.

Dengue fever is caused by four spread by the mosquito . The disease causes and has been called "breakbone fever" because of the joint aches and muscle pains it causes. Dengue viruses can also cause a potentially fatal disease, dengue hemorrhagic fever, in people who have previously been infected with a different strain of the virus.

Dengue viruses are found throughout the tropics and and appear annually in . The researchers released infected with the bacterial parasite Wolbachia, which suppresses the virus, and now report that the Wolbachia parasite spreads rapidly through the wild mosquito population.

"The results show we can completely transform local populations in a few months," Turelli said.

Wolbachia is transmitted by to their offspring. A pair of infected mosquitoes produce slightly fewer eggs than an uninfected couple, but when an infected male mosquito mates with an uninfected female, she produces no eggs at all. That provides a big reproductive advantage to the spread of Wolbachia-infected mosquitoes, generation by generation.

"It's natural selection on steroids," Turelli said.

It turns out that Wolbachia also suppresses various other microbes living in the same mosquito – including the dengue virus. As these virus-resistant mosquitoes spread through the wild population, dengue transmission should dry up.

Turelli and Hoffmann first described what turned out to be Wolbachia spreading among Drosophila flies in California's Central Valley in 1991, and Barton developed much of the relevant mathematics in the late 1970s while trying to understand the genetics of grasshoppers in the French Alps. That basic research by Turelli, Hoffman and Barton provides the biological and mathematical basis for the dengue control strategy.

"At the time, none of us expected that this original research might contribute to human health. This is very exciting, once-in-a-lifetime opportunity," Turelli said. "We never thought this would turn into an eradication project."

The mathematics is complicated because when Wolbachia is rare, its spread through an insect population is disadvantaged because infected couples lay fewer eggs than uninfected. However, once the frequency of the infection crosses a certain threshold, there is a strong advantage to its spread.

Originally, Turelli and other researchers lead by Scott O'Neill at the University of Queensland, funded by the Bill & Melinda Gates Foundation, tried to use Wolbachia to shorten the lifespan of Aedes so that the virus would not have the 12 days necessary to develop. However, that approach seems unlikely to work, based on the mathematics of the spread of that type of Wolbachia.

Instead, the team found that Wolbachia itself suppresses certain viruses. The Gates Foundation is providing further funding to support release of infected mosquitoes in Australia, Vietnam and Thailand.

Provided by University of California - Davis

5 /5 (2 votes)

Related Stories

Scientists find bacterium can halt dengue virus transmission

Apr 01, 2010

Dengue fever -- caused by a virus transmitted by mosquitoes -- threatens 2.5 billion people each year and there is no vaccine or treatment. New research by Michigan State University entomologists has found that a bacterium ...

Dengue-resistant mosquitoes to be released next year

Oct 10, 2010

(PhysOrg.com) -- Every year, dengue fever infects up to 100 million people and kills more than 20,000 of them. In an effort to reduce these numbers, scientists have infected mosquitoes with bacteria that makes ...

Scientists closing the zap on dengue fever

Jan 01, 2009

(PhysOrg.com) -- A mosquito-borne virus that each year harms up to 100 million people and kills more than 20,000 is a step closer to being controlled after a breakthrough by Queensland scientists.

Mosquito parasite may help fight dengue fever

May 01, 2009

Dengue fever is a terrible viral disease blighting many of the world's tropical regions. Carried by mosquitoes, such as Aedes aegypti, 40% of the world's population is believed to be at risk from the infect ...

Recommended for you

Sierra Leone faces criticism over Ebola shutdown

16 hours ago

Sierra Leone began the second day of a 72-hour nationwide shutdown aimed at containing the spread of the deadly Ebola virus on Saturday amid criticism that the action was a poorly planned publicity stunt.

Presence of peers ups health workers' hand hygiene

Sep 19, 2014

(HealthDay)—The presence of other health care workers improves hand hygiene adherence, according to a study published in the October issue of Infection Control and Hospital Epidemiology.

Sierra Leone streets deserted as shutdown begins

Sep 19, 2014

Sierra Leone's normally chaotic capital resembled a ghost town on Friday as residents were confined to their homes for the start of a three-day lockdown aimed at halting the deadly Ebola epidemic.

Sierra Leone launches controversial Ebola shutdown

Sep 19, 2014

Sierra Leone on Friday launched a controversial three-day shutdown to contain the deadly spread of the Ebola virus, as the UN Security Council declared the deadly outbreak a threat to world peace.

User comments