Novel control of Dengue fever

The spread of Dengue fever in northern Australia may be controlled by a bacterium that infects mosquitoes that harbor the virus, Australian and U.S. researchers report Aug. 25 in two papers published in the journal Nature.

The result grew out of work more than 20 years ago by population biologist Michael Turelli, professor of evolution and ecology at UC Davis, and Ary Hoffmann, now at the University of Melbourne, Australia, who are among the coauthors of one of the new Nature papers.

Turelli and Nick Barton of the Institute of Science and Technology, Austria, also describe the mathematical basis of the elimination project in a paper to be published in the journal in September.

Dengue fever is caused by four spread by the mosquito . The disease causes and has been called "breakbone fever" because of the joint aches and muscle pains it causes. Dengue viruses can also cause a potentially fatal disease, dengue hemorrhagic fever, in people who have previously been infected with a different strain of the virus.

Dengue viruses are found throughout the tropics and and appear annually in . The researchers released infected with the bacterial parasite Wolbachia, which suppresses the virus, and now report that the Wolbachia parasite spreads rapidly through the wild mosquito population.

"The results show we can completely transform local populations in a few months," Turelli said.

Wolbachia is transmitted by to their offspring. A pair of infected mosquitoes produce slightly fewer eggs than an uninfected couple, but when an infected male mosquito mates with an uninfected female, she produces no eggs at all. That provides a big reproductive advantage to the spread of Wolbachia-infected mosquitoes, generation by generation.

"It's natural selection on steroids," Turelli said.

It turns out that Wolbachia also suppresses various other microbes living in the same mosquito – including the dengue virus. As these virus-resistant mosquitoes spread through the wild population, dengue transmission should dry up.

Turelli and Hoffmann first described what turned out to be Wolbachia spreading among Drosophila flies in California's Central Valley in 1991, and Barton developed much of the relevant mathematics in the late 1970s while trying to understand the genetics of grasshoppers in the French Alps. That basic research by Turelli, Hoffman and Barton provides the biological and mathematical basis for the dengue control strategy.

"At the time, none of us expected that this original research might contribute to human health. This is very exciting, once-in-a-lifetime opportunity," Turelli said. "We never thought this would turn into an eradication project."

The mathematics is complicated because when Wolbachia is rare, its spread through an insect population is disadvantaged because infected couples lay fewer eggs than uninfected. However, once the frequency of the infection crosses a certain threshold, there is a strong advantage to its spread.

Originally, Turelli and other researchers lead by Scott O'Neill at the University of Queensland, funded by the Bill & Melinda Gates Foundation, tried to use Wolbachia to shorten the lifespan of Aedes so that the virus would not have the 12 days necessary to develop. However, that approach seems unlikely to work, based on the mathematics of the spread of that type of Wolbachia.

Instead, the team found that Wolbachia itself suppresses certain viruses. The Gates Foundation is providing further funding to support release of infected mosquitoes in Australia, Vietnam and Thailand.

Provided by University of California - Davis

5 /5 (2 votes)

Related Stories

Scientists find bacterium can halt dengue virus transmission

Apr 01, 2010

Dengue fever -- caused by a virus transmitted by mosquitoes -- threatens 2.5 billion people each year and there is no vaccine or treatment. New research by Michigan State University entomologists has found that a bacterium ...

Dengue-resistant mosquitoes to be released next year

Oct 10, 2010

(PhysOrg.com) -- Every year, dengue fever infects up to 100 million people and kills more than 20,000 of them. In an effort to reduce these numbers, scientists have infected mosquitoes with bacteria that makes ...

Scientists closing the zap on dengue fever

Jan 01, 2009

(PhysOrg.com) -- A mosquito-borne virus that each year harms up to 100 million people and kills more than 20,000 is a step closer to being controlled after a breakthrough by Queensland scientists.

Mosquito parasite may help fight dengue fever

May 01, 2009

Dengue fever is a terrible viral disease blighting many of the world's tropical regions. Carried by mosquitoes, such as Aedes aegypti, 40% of the world's population is believed to be at risk from the infect ...

Recommended for you

Restrictions lifted at British bird flu farm

16 hours ago

Britain on Sunday lifted all restrictions at a duck farm in northern England after last month's outbreak of H5N8 bird flu, the same strain seen in recent cases across Europe.

Recorded Ebola deaths top 7,000

Dec 20, 2014

The worst Ebola outbreak on record has now killed more than 7,000 people, with many of the latest deaths reported in Sierra Leone, the World Health Organization said as United Nations Secretary-General Ban ...

Liberia holds Senate vote amid Ebola fears (Update)

Dec 20, 2014

Health workers manned polling stations across Liberia on Saturday as voters cast their ballots in a twice-delayed Senate election that has been criticized for its potential to spread the deadly Ebola disease.

Evidence-based recs issued for systemic care in psoriasis

Dec 19, 2014

(HealthDay)—For appropriately selected patients with psoriasis, combining biologics with other systemic treatments, including phototherapy, oral medications, or other biologic, may result in greater efficacy ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.