EPFL Deep Brain Stimulation spin-off raises 10 million Swiss francs

By Cécilia Carron

One of the biggest financing rounds for furthering the work of a doctoral student has just been completed at EPFL. The microscopic electrodes developed by André Mercanzini – which are currently in clinical trials – could revolutionize Deep Brain Stimulation.

The microelectrodes developed by André Mercanzini should generate a lot of interest from investors: they have the potential to reduce side-effects, the risk of complications, and cost. At a time when (DBS) has an increasing number of applications – such as the treatment of pain relief, epilepsy and depression – the market for these products is estimated to be around 450 million Swiss francs. “It should grow at about 25% each year,” notes Jean-Pierre Rosat, CEO of Aleva Neurotherapeutics. The start-up, launched by the young scientist in 2008, has just completed a round of financing that raised 10 million francs, thanks to BiomedInvest AG, BB Biotech Ventures III, Initiative Capital Romandie, and private investors. It’s almost certainly a record for the school for an innovative product resulting from doctoral work over the last ten years.

The DBS technique has been used since the beginning of the nineties for the treatment of Parkinson’s Disease. It consists of implanting 3 millimeters long at precise points in the brain, while a pacemaker, implanted at the level of the thorax, continuously sends impulses in order to reduce symptoms. To fit the electrode in place, the target zone is identified using the technique of radiological localization. The results are spectacular: as soon as the device is implanted, trembling, rigidity and problems with movement diminish, thus improving the quality of life of the patient.

As part of his thesis with Professor Philippe Renaud, André Mercanzini – now CTO of the company – developed the microscopic electro-stimulators at the Center for MicroNanoTechnology, most of the work taking place in the clean room, a dust-free area. Measuring from 50 microns in diameter (the width of a hair) to a millimeter, they will enable improved precision, which in turn will limit side effects. Its dimensions will make it possible to position more than twenty of them on the surface to be treated, compared with a maximum of four using products currently on the market. This will result in an increase in the number of neurological diseases that might be treated by this method.

The fineness of these devices will also enable easier implantation and the surgical procedures will be more rapid. Moreover, the treatment of other conditions can be envisaged, in particular psychiatric illnesses, where the relevant zone is very small. The material used is a composite of polymer and metal, and this greatly reduces any risk of rejection of the implant by the patient’s body.

This product, currently the subject of clinical trials at CHUV, combines reliability with cost reduction. The recent investments will allow the company to increase its activity and bring the new electrode to the market.

Provided by Ecole Polytechnique Federale de Lausanne

not rated yet
add to favorites email to friend print save as pdf

Related Stories

New approach simplifies Parkinson's surgery

May 25, 2011

(Medical Xpress) -- University of Wisconsin Hospital and Clinics has become the second academic medical center in the country where neurosurgeons can perform deep-brain stimulation (DBS) in an intra-operative ...

UCSF neurosurgeons test new device for placing brain implants

Apr 13, 2011

A new MRI device that guides surgeons as they implant electrodes into the brains of people with Parkinson's disease and other neurological disorders could change the way this surgery, called deep brain stimulation, is performed ...

Recommended for you

New ALS associated gene identified using innovative strategy

9 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

9 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

10 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

13 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

13 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

pdriscoll
not rated yet Aug 25, 2011
Please note Aleve Therapeutics SA indicates the financing was EUR 9.5 million, not 10 million francs. See their website for the press release.