Faulty signaling in brain increases craving for sugar and drugs

August 30, 2011

When glutamate and dopamine do not collaborate as they should in the brain's signal system, the kick that alcohol, sugar, or other drugs induce increases. This is shown in a new Swedish-Canadian study on mice being published today in the prestigious Journal of Neuroscience. It provides a key piece of the puzzle about the mechanisms behind both substance abuse and obesity.

"Our data indicate that the brain becomes hypersensitive to rewards when this co-signaling of glutamate and dopamine does not function. Lower doses than normal are enough to increase the propensity to ingest the substance, and this is true of both sugar and ," says Asa Mackenzie, associate professor of neuroscience at Uppsala University and the researcher who led the study.

Addiction disorders are a major social problem, and we lack sufficient knowledge of how they arise and how various substances impact the brain. The brain's reward system gives us feelings of pleasure and happiness, for example when we have eaten or drunk something good, had sex, or worked out. This pleasure arises when certain signal substances, primarily dopamine, are released in the brain. But this reward system can be "kidnapped" by other rewarding substances, such as alcohol and abuser drugs like cocaine. They provide feelings of reward initially, but they are so strong that in the system are rewired, and addiction occurs. More , such as food rich in sugar, can also produce addiction-like conditions.

The Uppsala researchers and their colleagues have recently shown that dopamine cells in the reward system can send signals in cooperation with glutamate, so called co-signaling. Its physiological role was not previously known, however. For instance, how important is it for the inclination to ingest reward substances?

In studies of mice that lack the ability to send the above signals because their glutamate transporter, so-called VGLUT, has been inactivated, the scientists studied how prone the mice were to ingest sugar and cocaine. The results showed that they both ingested more and responded to lower dosages than control mice.

Since there is a strong correlation between memory and consumption substances, and ultimately also for the risk of addiction, the researchers also looked into this. They are able to present the interesting finding from the study that mice that lack the ability to co-signal developed dramatically improved memory of environments that could be associated with the ingestion of drugs. They also found changes in genetic expressions in the that indicate that the brain has become hypersensitive and that dopamine levels have dropped.

"This is extremely interesting, but more research is needed in order to understand how this can be used in drug development, for instance," says Asa Mackenzie.

These scientists have now gone on to study these mechanisms in connection with abuse in humans and are looking for direct connections between low VGLUT levels and addiction.

Explore further: Cocaine's effects on brain metabolism may contribute to abuse

Related Stories

Cocaine's effects on brain metabolism may contribute to abuse

February 18, 2008

Many studies on cocaine addiction - and attempts to block its addictiveness - have focused on dopamine transporters, proteins that reabsorb the brain's "reward" chemical once its signal is sent. Since cocaine blocks dopamine ...

Gene therapy reduces cocaine use in rats

April 16, 2008

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have shown that increasing the brain level of receptors for dopamine, a pleasure-related chemical, can reduce use of cocaine by 75 percent in rats ...

Reward-stress link points to new targets for treating addiction

December 16, 2008

Rewarding and stressful signals don't seem to have much in common. But researchers studying diseases ranging from drug addiction to anxiety disorders are finding that the brain's reward and stress signaling circuits are intertwined ...

Glutamate can play key role in drug impact on brain

December 16, 2009

(PhysOrg.com) -- Addiction disorders of various kinds are a major health and social problem, and our knowledge of how the brain’s reward system functions needs to be enhanced. Uppsala researchers now shows an unexpected ...

Why the craving for cocaine won't go away

September 16, 2010

People who have used cocaine run a great risk of becoming addicted, even after long drug-free periods. Now researchers at Linköping University and their colleagues can point to a specific molecule in the brain as a possible ...

Receptor limits the rewarding effects of food and cocaine

July 12, 2011

(Medical Xpress) -- Researchers have long known that dopamine, a brain chemical that plays important roles in the control of normal movement, and in pleasure, reward and motivation, also plays a central role in substance ...

Recommended for you

Next steps in understanding brain function

August 26, 2016

The most complex piece of matter in the known universe is the brain. Neuroscientists have recently taken on the challenge to understand brain function from its intricate anatomy and structure. There is no sure way to go about ...

Scientists map brain's action center

August 25, 2016

When you reach for that pan of brownies, a ball-shaped brain structure called the striatum is critical for controlling your movement toward the reward. A healthy striatum also helps you stop yourself when you've had enough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.