Genetic analysis of amniotic fluid shows promise for monitoring fetal development

August 8, 2011

Researchers have demonstrated the feasibility of focused fetal gene expression analysis of target genes found in amniotic fluid using Standardized NanoArray PCR (SNAP) technology. This analysis could be used to monitor fetal development, enabling clinicians to determine very early in pregnancy whether fetal organ systems are developing normally. The study appears in the September issue of The Journal of Molecular Diagnostics.

Using a previously developed SNAP gene panel as , investigators from the Floating Hospital for Children at Tufts Medical Center, Mount Sinai School of Medicine, and Prevail Dx determined that 7 of the 21 genes assayed were expressed differently depending on fetal sex or . Results were obtained from amniotic fluid supernatant samples from fetuses between 15 to 20 weeks of gestation, when standard amniotic fluid testing is performed.

"In the future, fetal gene expression panels could prove useful in prenatal care to evaluate function in cases of at-risk pregnancies and fetal pathologies," commented lead investigator Lauren J. Massingham, MD, Division of Genetics, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts. According to the investigators, further studies using this gene panel approach could elucidate the complex immune pathways involved in the maternal-fetal relationship.

Dr. Massingham added, "Some genes in the current panel may prove to be useful components of a fetal gene expression panel. Future studies are warranted to identify additional genes to be incorporated, including inflammatory, developmental, and gastrointestinal genes. This technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care."

SNAP technology allows for the simultaneous quantitative assessment of tens to hundreds of genes from reduced and degraded nucleic acid samples, overcoming the quality concerns of processing primary human samples. Gene expression that varies by up to five orders of magnitude can be quantified using a single assay.

Related Stories

Recommended for you

Questions, concerns about 'three-parent' baby

September 28, 2016

The surprise announcement that a healthy baby boy was born from a new technique mixing the DNA of two women and a man raises as many questions—scientific and ethical—as it settles, experts said Wednesday.

How our cells use mother's and father's genes

September 28, 2016

Researchers at Karolinska Institutet and Ludwig Institute for Cancer Research have characterized how and to what degree our cells utilize the gene copies inherited from our mother and father differently. At a basic level ...

Regulatory RNA essential to DNA damage response

September 26, 2016

Stanford researchers have found that a tumor suppressor known as p53 is stabilized by a regulatory RNA molecule called DINO. The interaction helps a cell respond to DNA damage and may play a role in cancer development and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.