Novel imaging probe allows noninvasive detection of dangerous heart-valve infection

August 21, 2011

A novel imaging probe developed by Massachusetts General Hospital (MGH) investigators may make it possible to diagnose accurately a dangerous infection of the heart valves. In their Nature Medicine report, which is receiving advance online publication, the team from the MGH Center for Systems Biology describes how the presence of Staphylococcus aureus-associated endocarditis in a mouse model was revealed by PET imaging with a radiolabeled version of a protein involved in a process that usually conceals infecting bacteria from the immune system.

"Our probe was able to sense whether S. aureus was present in abnormal growths that hinder the normal function of heart valves," says Matthias Nahrendorf, MD, PhD, of the MGH Center for Systems Biology, a co-lead author of the study. "It has been very difficult to identify the bacteria involved in endocarditis, but a precise diagnosis is important to steering well-adjusted ."

An infection of the tissue lining the heart valves, endocarditis is characterized by growths called vegetations made up of clotting components such as platelets and fibrin along with infecting microorganisms. Endocarditis caused by S. aureus is the most dangerous, with a mortality rate of from 25 to almost 50 percent, but diagnosis can be difficult since symptoms such as fever and heart murmur are vague and blood tests may not detect the involved bacteria. Without appropriate antibiotic therapy, S. aureus endocarditis can progress rapidly, damaging or destroying .

S. aureus bacteria initiate the growth of vegetations by secreting staphylocoagulase, an enzyme that sets off the clotting cascade. This process involves a protein called prothrombin, which is part of a pathway leading to the deposition of fibrin, a primary component of blood clots. The clotting process enlarges the vegetation, anchors it to the heart valve and serves to conceal the bacteria from in the bloodstream.

To develop an imaging-based approach to diagnosing S. aureus endocarditis, the MGH team first investigated the molecular mechanism by which staphylocoagulase sets off the clotting cascade, finding that one staphylocoagulase molecule interacts with at least four molecules of fibrin or its predecessor molecule fibrinogen in a complex that binds to a growing vegetation. Since prothrombin is an essential intermediary in the staphylocoagulase/fibrin interaction, the researchers investigated whether labeled versions of prothrombin could accurately detect S. aureus endocarditis in mice.

After initial experiments confirmed that an optical imaging technology called FMT-CT could detect a fluorescence-labeled version of prothombin deposited into S. aureus-induced vegetations, the researchers showed that a radiolabeled version of prothombin enabled the detection of S. aureus vegetations with combined PET-CT imaging, an approach that could be used in human patients after additional development and FDA approval.

"An approach like this could help clinicians detect the presence of endocarditis, determine its severity and whether it is caused by S. aureus, and track the effectiveness of antibiotics or other treatments," says Nahrendorf, also a co-corresponding author of the article and an assistant professor of Radiology at Harvard Medical School. "We are working to improve the PET reporter probe with streamlined chemistry and a more mainstream PET isotope to make it a better candidate for eventual testing in patients."

Explore further: Bacteria build walls to withstand antibiotics

Related Stories

Bacteria build walls to withstand antibiotics

November 1, 2005

Antibiotic resistant bacteria, which are proliferating in hospitals and causing major headaches for physicians, cheat death by finding ways to fortify their cell walls against the deadly drugs. The question is: how? New research ...

Possible pet-human bacteria link studied

March 22, 2006

Scientists at an international conference in Atlanta say they're investigating a possible link between antibiotic resistance in pets and pet owners.

Turning on cell-cell communication wipes out staph biofilms

April 30, 2008

University of Iowa researchers have succeeded in wiping out established biofilms of Staphylococcus aureus (staph) by hijacking one of the bacteria's own regulatory systems. Although the discovery is not ready for clinical ...

New step forward in search for solution to infection puzzle

August 6, 2008

Scientists at the University of York have helped to reveal more about the way bacteria can attach to human tissues. The study could help in the development of new treatments for serious heart conditions such as infective ...

Artificial intelligence helps diagnose cardiac infections

September 12, 2009

Mayo Clinic researchers say that "teachable software" designed to mimic the human brain may help them diagnose cardiac infections without an invasive exam. Those findings are being presented today at the Interscience Conference ...

'Jailbreak' bacteria can trigger heart disease

September 6, 2010

Plaque-causing bacteria can jailbreak from the mouth into the bloodstream and increase your risk of heart attack says a scientist at the Society for General Microbiology's autumn meeting in Nottingham.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.