New insight into impulse control

How the brain controls impulsive behavior may be significantly different than psychologists have thought for the last 40 years.

That is the unexpected conclusion of a study by an international team of published in the Aug. 31 issue of the Journal of Neuroscience.

Impulse control is an important aspect of the brain's executive functions – the procedures that it uses to control its own activity. Problems with impulse control are involved in ADHD and a number of other psychiatric disorders including schizophrenia. The current research set out to better understand how the is wired to control .

"Our study was focused on the control of eye movements, but we think it is widely applicable," said Vanderbilt Ingram Professor of Neuroscience Jeffrey Schall, co-author of the new study.

Schall directed the study with Vanderbilt Centennial Professor of Psychology Gordon Logan and Associate Professor of Psychology Thomas Palmeri in collaboration with Pierre Pouget from the French National Institute of Health and Medical Research (INSERM), Leanne Boucher, assistant professor of psychology at Nova Southeastern University, and Martin Paré from Queen's University in Ontario, Canada.

Understanding impulse control

There are two sets of neurons that control how we process and react to what we see, hear, smell, taste or touch. The first set, , respond to different types of stimuli in the environment. They are connected to movement neurons that trigger an action when the information they receive from the sensory neurons reaches a certain threshold. Response time to stimuli varies considerably depending on a number of factors. When accuracy is important, for example, lengthen. When speed is important, response times shorten.

According to Logan, there is clear evidence of a link between reaction time variations and certain mental disorders. "In countermanding tests, the response times of people with ADHD don't slow down as much following a stop-signal trial as normal subjects, while response times of schizophrenics tend to be much slower than normal," he said.

Since the 1970's, researchers have believed that the brain controls these response times by altering the threshold at which the movement neurons trigger an action: When rapid action is preferable, the threshold is lowered and when greater deliberation is called for, the threshold is increased.

In a direct test of this theory, however, Logan, Palmeri, Schall and their collaborators found that differences in when the movement neurons began accumulating information from the sensory neurons – rather than differences in the threshold – appear to explain the adjustment in response times.

This discovery forced them to make major modifications in the existing cognitive model of impulse control and is an example of the growing usefulness of such models to understand in much greater detail what is occurring in the brain to cause both normal and abnormal behaviors.

"Psychopathologists are beginning to use these models to make connections with various brain disorders that we haven't been able to make before," Palmeri said.

In the experiment

The researchers directly tested the threshold hypothesis by analyzing recordings of neuronal activity in macaque monkeys performing a visual eye movement stopping task. In this task, the monkey is trained to look directly at a target that is flashed in different locations on a computer screen, except when the target is quickly followed by a stop signal. When this happens, the monkey gets a reward if it continues to look at the fixation spot in the center of the screen.

In the experiment, the delay between the appearance of the target and stop signals ranged from 25 milliseconds to 275 milliseconds. During this time, the movement neurons are still processing the signals generated by the appearance of the target. The longer the delay, the more difficult it is for the monkey to keep from glancing at the target. In both humans and monkeys, the reaction time in these tasks is significantly longer immediately following the stop signal.

The researchers believe their discovery is significant because it sheds new light on how the brain controls all sorts of basic impulses. It is possible that neurons from the medial frontal cortex, which performs executive control of decision-making, in the parietal lobe, which determines our spatial sense, or the temporal lobe, which plays a role in memory formation, may affect by altering the onset delay time of neurons involved in a number of other basic stimulus/response reactions.

Related Stories

Neurons cast votes to guide decision-making

Oct 08, 2010

(PhysOrg.com) -- We know that casting a ballot in the voting booth involves politics, values and personalities. But before you ever push the button for your candidate, your brain has already carried out an ...

Turning Sensation into Perception

Nov 06, 2005

Perceiving a simple touch may depend as much on memory, attention, and expectation as on the stimulus itself, according to new research from Howard Hughes Medical Institute (HHMI) international research scholar Ranulfo Romo ...

Researchers find 'switch' for brain's pleasure pathway

Mar 22, 2006

Amid reports that a drug used to treat Parkinson's disease has caused some patients to become addicted to gambling and sex, University of Pittsburgh researchers have published a study that sheds light on what may have gone ...

Neuroscientists find neural stopwatch in the brain

Oct 19, 2009

(PhysOrg.com) -- Keeping track of time is one of the brain's most important tasks. As the brain processes the flood of sights and sounds it encounters, it must also remember when each event occurred. But how ...

Recommended for you

Damage to brain networks affects stroke recovery

Nov 21, 2014

(Medical Xpress)—Initial results of an innovative study may significantly change how some patients are evaluated after a stroke, according to researchers at Washington University School of Medicine in St. ...

Dopamine leaves its mark in brain scans

Nov 21, 2014

Researchers use functional magnetic resonance imaging (fMRI) to identify which areas of the brain are active during specific tasks. The method reveals areas of the brain, in which energy use and hence oxygen ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

ED__269_
not rated yet Aug 30, 2011
Well written article;

such a simple experiment but so revealing.

Qestion:
A memory link to impulse control - explained in the fact that there is registration of the stop-sign by the monkey during times of impulse control?

I think there is.
hush1
not rated yet Aug 31, 2011
What controls threshold? Memory? Well, alright. Remember, memory comes from sensory experience. And all sensory experience is physical in origin. And change is a fundamental property of all things physical. Perhaps rate of change is fundamental to threshold.
hard2grep
not rated yet Aug 31, 2011
them are some smart monkeys. I can just imagine that monkey trying as hard as he or she can NOT to look at something. Once desensitized, the poor thing can do the action without a flinch. I bet females are better at this because males are territorial. I hear that monkeys eat their spinach too.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.