Researchers link Alzheimer's to lack of specific protein

August 16, 2011

A new clue to understanding one of the causes of Alzheimer's disease was unveiled in an article published Sunday (Aug. 14) in Nature Neuroscience online. Kara Pratt, a new faculty member in the University of Wyoming Neuroscience Center , is the study's lead investigator.

Neurons, the cells of the brain and the nervous system, are amazingly flexible and adaptable, says Pratt, who led the project as a post-doctoral researcher at the University of Washington School of Medicine.

When proteins receive a lot of information from other neurons, they compensate by turning down their synaptic strengths ("input gain"). Conversely, Pratt says, when stimulated at lower than normal frequencies, they turn up their synaptic strengths. This is a form of neural plasticity referred to as homeostasis, which allows neurons to function stably in the midst of extreme changes in activity levels.

She says in people with Alzheimer's disease, it has been hypothesized that may lose their flexibility. The most common way in which familial (inherited) Alzheimer' disease is inherited is by a mutation in a protein called presenilin.

The researchers found that neurons that do not have presenilin are not adaptable -- are unable to change their gain -- when activity levels are altered for long periods of time. Pratt says the researchers also tested the compensatory response in neurons from engineered to express a mutated form of presenilin. These neurons also failed to adapt to changing amounts of stimulation.

"Our experiments indicate that presenilin is essential for neurons to remain adaptable," Pratt says. "Lack of this type of adaptability could contribute to underlying Alzheimer's disease."

Pratt is setting up a laboratory in the UW Department of Zoology and Physiology to study forms of neuron adaptability and other forms of in the developing visual system of the African clawed frog tadpole.

Related Stories

Recommended for you

Scientists track unexpected mechanisms of memory

September 29, 2016

Do you remember Simone Biles's epic gymnastics floor routine that earned her a fifth Olympic medal? Our brains hold on to memories like these via physical changes in synapses, the tiny connections between neurons.

Brain's biological clock stimulates thirst before sleep

September 28, 2016

The brain's biological clock stimulates thirst in the hours before sleep, according to a study published in the journal Nature by researchers from the Research Institute of the McGill University Health Centre (RI-MUHC).

Some brains are blind to moving objects

September 28, 2016

As many as half of people are blind to motion in some part of their field of vision, but the deficit doesn't have anything to do with the eyes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.