Alzheimer's brains found to have lower levels of key protein

Researchers have found that a protein variation linked by some genetic studies to Alzheimer's disease is consistently present in the brains of people with Alzheimer's. In further biochemical and cell culture investigations, they have shown that this protein, known as ubiquilin-1, performs a critical Alzheimer's-related function: it "chaperones" the formation of amyloid precursor protein, a molecule whose malformation has been directly tied to Alzheimer's pathology.

"What we saw here is that in all 20 of the Alzheimer's brains we examined the ubiquilin-1 was lower, and that's completely new," said University of Texas Medical Branch at Galveston assistant professor José Barral, co-author of a paper on the study now online in the Journal of Biological Chemistry. "Our experiments looked at the consequences of decreased ubiquilin-1, and showed that it's necessary for the proper handling of amyloid ."

APP has been a major focus of Alzheimer's investigators for almost two decades, ever since scientists identified it as the source of so-called "protein plaques," abnormal aggregations of proteins nearly always found in the brains of Alzheimer's victims. Ubiquilin-1's significance was revealed after the UTMB researchers established ubiquilin-1's status as a chaperone protein for APP.

In the origami-like folding process by which proteins arrive at their proper shape, chaperone proteins act as, well, chaperones: they bind to their client proteins and make sure they don't misbehave.

The kind of APP misbehavior Alzheimer's researchers are most concerned about is the formation of toxic aggregations of the protein or its breakdown products, both inside and outside cells. Through a series of biochemical and cell-culture experiments, the UTMB team was able to show that ubiquilin-1 decreased this aggregation.

"Ubiquilin-1 prevents the APP molecule from falling into a conformation it's not supposed to be in," said UTMB associate professor Darren Boehning, co-author of the Journal of Biological Chemistry paper. "This fits with a theme we're seeing across the neurodegenerative disorders and the disorders of aging - the idea that many of these disorders are associated with decreased quality control by chaperones."

Related Stories

New approach to Alzheimer's therapy

Jul 30, 2010

Researchers from the German Centre for Neurodegenerative Diseases and the Ludwig-Maximilians-Universitat in Munich have shown that the ADAM10 protein can inhibit the formation of beta-amyloid, which is responsible for Alzheimer's ...

Road block as a new strategy for the treatment of Alzheimer's

Aug 22, 2011

Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

Scientists find new cause of Alzheimer's

Apr 19, 2006

Belgium researchers say they are the first to demonstrate the quantity of amyloid protein in brain cells is a major factor of Alzheimer's disease.

How neuronal activity leads to Alzheimer's protein cleavage

Oct 20, 2008

Amyloid precursor protein (APP), whose cleavage product, amyloid-b (Ab), builds up into fibrous plaques in the brains of Alzheimer's disease patients, jumps from one specialized membrane microdomain to another to be cleaved, ...

Recommended for you

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.