Study points to way of improving chemotherapy response

September 2, 2011
Study points to way of improving chemotherapy response
Paclitaxel blocks cancer growth by stopping cells separating into two new cells.

(Medical Xpress) -- Blocking key proteins could improve response to a common chemotherapy drug, suggests an Oxford University-led study which used cancer cells grown in the lab.

The research offers several new targets for developing future drugs to boost the success rate of the tumour-shrinking drug paclitaxel ().

Paclitaxel is a drug commonly used to treat breast and ovarian cancer, but some tumours can become resistant over time and start growing again. The drug blocks the growth of cancer by interfering with microtubules – structures that help chromosomes to separate during cell division.

The international team of researchers found that blocking certain proteins stabilised the microtubules and made ovarian more sensitive to paclitaxel. The findings are published in the journal Cancer Research.

Lead researcher Dr Ahmed Ahmed of the University of Oxford said: ‘Our work provides further evidence for the important link between the stability of microtubules, the backbone of the cell, and sensitivity to paclitaxel.

‘And because the proteins we’ve identified share the same target as paclitaxel, it raises the prospect of developing more specific drugs that sensitise cancer cells to paclitaxel without damaging the surrounding tissues.’

Previous research by Dr Ahmed and colleagues in the Nuffield Department of Obstetrics and Gynaecology found that the loss of a called TGFBI – which sends messages that stabilise the microtubules – caused paclitaxel to fail.

So to test the theory that microtubule stability may be essential for paclitaxel response, the researchers systematically blocked other signalling proteins in cells growing in the lab, to see which might alter paclitaxel response.

Dr Robert Bast of the University of Texas MD Anderson Cancer Centre, who was also involved in the work, said: ‘Our study has revealed several new proteins involved in microtubule stability that could be potential targets for drugs to improve the sensitivity of cancer cells to , without damaging healthy cells.’

The research was funded by Cancer Research UK, the University of Oxford, the Camilla Samuel Fund, and the MD Anderson Cancer Center.

Dr Julie Sharp, senior science information manager at Cancer Research UK, said: ‘Overcoming drug resistance is a key challenge for our researchers. Unravelling the genetic basis of cancer to find out what determines whether a patient will respond to treatment will help us take a more targeted approach to tackle this problem. This approach could lead to fewer side effects and provide a lifeline for patients who have stopped responding to conventional treatments.’

Explore further: Nanoparticles Overcome Anticancer Drug Resistance

Related Stories

Nanoparticles Overcome Anticancer Drug Resistance

June 12, 2006

Too often, chemotherapy fails to cure cancer because some tumor cells develop resistance to multiple anticancer drugs. In most cases, resistance develops when cancer cells begin expressing a protein, known as p-glycoprotein, ...

Double-Duty Nanoparticles Overcome Drug Resistance in Tumors

June 14, 2007

Cancer cells, like bacteria, can develop resistance to drug therapy. In fact, research suggests strongly that multidrug resistant cancer cells that remain alive after chemotherapy are responsible for the reappearance of tumors ...

Gene fault could predict ovarian cancer drug success

June 6, 2011

Faults in a gene commonly inactivated in many different types of cancer could be used to predict which drug combination ovarian cancer patients are most likely to benefit from, according to research at Newcastle University.

Recommended for you

Oxygen can impair cancer immunotherapy in mice

August 25, 2016

Researchers have identified a mechanism in mice by which anticancer immune responses are inhibited within the lungs, a common site of metastasis for many cancers. This mechanism involves oxygen inhibition of the anticancer ...

Stem cell propagation fuels cancer risk in different organs

August 25, 2016

The idea that stem cells - special cells that divide to repair and generate tissues - might be the major determinant of cancer risk has provoked great debate in the scientific community. Some researchers maintain that environmental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.