New research discovers key to survival of brain cells

September 28, 2011

Nicolas G. Bazan, MD, Ph.D, Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health Sciences Center New Orleans, and David Stark, an MD/Ph.D student working in his lab, have discovered how a key chemical neurotransmitter that interacts with two receptors in the brain promotes either normal function or a disease process -- determining whether brain cells live or die. The work is published and highlighted in the September 28, 2011 issue of the Journal of Neuroscience.

These findings reveal how receptor signaling takes place between receptors of synapses (gaps between neurons through which chemical or pass permitting cells to "talk" to each other) and the mechanisms involved in initiating disease. The receptors, called NMDARs, are located both inside and outside of the synapses. Activation of the NMDRs inside (synaptic) allows the synapse to adjust response to signals and activation of the synaptic NMDRs is also required for survival of the cell. In contrast, activation of the receptors outside the synapse (extrasynaptic) leads to cell death.

The LSUHSC research team believed that activation of the extrasynaptic NMDRs promotes the pathological effects of 2 (COX-2), a protein known to contribute to inflammation associated with . They found that activating the synaptic NMDRs greatly increased levels of COX-2, but not of the chemical (arachidonic acid) upon which COX-2 acts. Conversely, activating the extrasynaptic NMDRs increased the levels of arachidonic acid, but not COX-2. The researchers discovered, however, when synaptic and extrasynaptic NMDARs were sequentially activated, the levels of both COX-2 and arachidonic acid increased, as did neurotoxic inflammation.

"We have discovered a fascinating relationship regarding the "conversations" that occur between these two in the brain," said Dr. Nicolas G. Bazan, Professor and Director, LSUHSC Neuroscience Center of Excellence.

"In this paper, we demonstrate how these signals affect cell functions and how they lead to diseases, including stroke, epilepsy and other neurodegenerative disorders. Targeting mechanisms that couple sequential synaptic then extrasynaptic NMDAR stimulations may lead to new anti-inflammatory/neuroprotective approaches."

The research was supported by grants from the National Institutes of Health, National Institute of Neurological Disorders and Stroke, National Center for Research Resources, and the National Center for Complementary and Alternative Medicine.

"I have a very gifted and talented young MD/Ph.D student in my lab, David Stark, who has a National Institutes of Health award, performed exemplary experiments and co-authored the paper with me," said Dr. Bazan.

Explore further: Study puts a new spin on ibuprofen's actions

Related Stories

Study puts a new spin on ibuprofen's actions

September 25, 2011

Ibuprofen, naproxen, and related non-steroidal anti-inflammatory drugs (NSAIDs) – the subjects of years of study – still have some secrets to reveal about how they work.

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.