In next-gen DNA sequence, new answers to a rare and devastating disease

September 6, 2011

In Leigh syndrome, infants are born apparently healthy only to develop movement and breathing disorders that worsen over time, often leading to death by the age of 3. The problem is that the mitochondria responsible for powering their cells can't keep up with the demand for energy in their developing brains.

Now, researchers reporting in the September issue of , a Cell Press publication, have discovered a new genetic defect that can lead to the disease. The findings were made by sequencing a subset of about 1,000 genes encoding proteins active in the mitochondria in just two individuals with Leigh syndrome.

"This shows the huge potential of to improve diagnosis," says David Thorburn of Murdoch Childrens Research Institute in Australia. "It's an all-comers approach that can be applied to individuals, even with no family history."

Leigh syndrome is the most common recognized mitochondrial disease of childhood, and the new genetic discovery adds to a growing list of about 40 genes known to cause Leigh syndrome when mutated.

The gene they uncovered encodes an enzyme active in mitochondria known as MTFMT (for mitochondrial methionyl-tRNA formyltransferase). (Mitochondria carry DNA of their own and their operation depends on a combination of proteins encoded locally and others encoded in the of a cell and imported.)

The MTFMT enzyme encoded in the is responsible for converting a (tRNA) into a form used to initiate protein translation. Without that enzyme, mitochondria fail to translate proteins efficiently leading to the symptoms recognized as Leigh syndrome. Studies in patient showed that the defects in translation could be corrected by replacing the MTFMT gene.

Although it isn't clear in the case of Leigh syndrome whether a precise will necessarily lead to therapies, the current findings represent a meaningful advance.

"It can be very reassuring to families to have a definitive answer," Thorburn says. "They are often referred around from one doctor to another. A diagnosis at least provides some closure to the diagnostic odyssey even without a treatment."

Diagnosis of the disease along with its specific genetic cause can also be informative about the risk a couple has of having another affected child, he adds. The diagnostic information can help in decisions about whether and how to pursue alternative means of having children, for instance through the use of donor sperm or eggs.

In addition to their clinical implications, the new findings offer insight into the biology and evolution of human mitochondria. Mitochondria originated from bacteria that were engulfed by another cell, and their use of the modified tRNA to initiate translation is a relic of that microbial past.

"It's not clear why this requirement would have been maintained," Thorburn says. "It means that if mitochondrial proteins enter the circulation, say after a traumatic injury, they are mistaken for bacterial proteins, triggering a systemic inflammatory response."

Explore further: Immune cells kill foes by disrupting mitochondria 2 ways

Related Stories

Immune cells kill foes by disrupting mitochondria 2 ways

May 15, 2008

When killer T cells of the immune system encounter virus-infected or cancer cells, they unload a lethal mix of toxic proteins that trigger the target cells to self-destruct. A new study shows T cells can initiate cellular ...

Discovery of genetic mutation in Leigh syndrome

August 11, 2009

Researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University have discovered a genetic mutation underlying late-onset Leigh syndrome, a rare inherited metabolic disorder characterized by ...

Genetic map reveals clues to degenerative diseases

August 24, 2011

An international research team, spearheaded by Dr. Tim Mercer from The University of Queensland's Institute for Molecular Bioscience (IMB), has unlocked the blueprints to the ‘power plants' of the cell in an effort that ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.