Scientists discover the proteins that control development of varicose veins

September 29, 2011

A new discovery published in the October 2011 print issue of The FASEB Journal explains for the first time what kicks off the process that causes varicose veins. In the article, researchers from Germany describe a single protein that binds to DNA to control gene function (called "transcription factor AP-1") and the subsequent production of a newly discovered set of proteins that significantly affect the development of varicose veins.

"We very much hope that our findings spur further studies focusing on the mechanisms underlying this widespread and precarious but still largely neglected venous disease," said Thomas Korff, Ph.D., study author from the Institute of Physiology and Pathophysiology at the University of Heidelberg in Heidelberg, Germany. "In the long run, such approaches will result in the development of a drug therapy that improves the quality of life for all people suffering from varicose veins."

To make this discovery, Korff and colleagues increased the blood pressure in a single vein of the ears of white mice, and followed the resulting changes in the size and architecture of the adjacent veins for several days. These changes were further analyzed in the abundance and activity of specific proteins in the veins connected to the one with increased blood pressure, and results were compared to those obtained from human varicose veins. By inhibiting the transcription factor AP-1 in the mouse ear model, synthesis of proteins associated with varicose remodeling and the proliferation of blood vessel were significantly reduced, and the varicose remodeling process was virtually abolished. AP-1 was inhibited by decoy oligonucleotides (decoy ODN), a well-studied class of nucleic acid-based drugs.

"Most people know varicose veins as an unsightly reminder of aging," said Gerald Weissmann, M.D., Editor-in-Chief of The , "but for some, cause significant pain that affects the quality and in some cases, length of life. While surgery may be beneficial in some cases, it's not the ideal solution. This research really opens the doors for an entirely new approach to treatment and prevention."

Explore further: Techniques to treat varicose veins appear comparable in effectiveness

More information: Anja Feldner, Hannes Otto, Stephan Rewerk, Markus Hecker, and Thomas Korff. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. FASEB J. 2011 25:3613-3621; doi: 10.1096/fj.11-185975

Related Stories

Recommended for you

An accessible approach to making a mini-brain

October 1, 2015

If you need a working miniature brain—say for drug testing, to test neural tissue transplants, or to experiment with how stem cells work—a new paper describes how to build one with what the Brown University authors say ...

Tension helps heart cells develop normally in the lab

October 1, 2015

The heart is never quite at rest, and it turns out that even in a lab heart cells need a little of that tension. Without something to pull against, heart cells grown from stem cells in a lab dish fail to develop normally.

Dormant viral genes may awaken to cause ALS

September 30, 2015

Scientists at the National Institutes of Health discovered that reactivation of ancient viral genes embedded in the human genome may cause the destruction of neurons in some forms of amyotrophic lateral sclerosis (ALS). The ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.