Scientists use uterine stem cells to treat diabetes

September 14, 2011
Yale researchers use uterine stem cells to treat diabetes
This is a slide of insulin-producing cells. Credit: Hugh Taylor, Yale University

Controlling diabetes may someday involve mining stem cells from the lining of the uterus, Yale School of Medicine researchers report in a new study published in the journal Molecular Therapy. The team treated diabetes in mice by converting cells from the uterine lining into insulin-producing cells.

The endometrium or uterine lining, is a source of . These cells generate uterine tissue each month as part of the menstrual cycle. Like other stem cells, however, they can divide to form other kinds of cells.

The Yale team's findings suggest that endometrial stem cells could be used to develop insulin-producing islet cells, which are found in the pancreas. These could then be used to advance the study of islet cell transplantation to treat people with diabetes.

Led by Yale Professor Hugh S. Taylor, M.D., the researchers bathed endometrial stem cells in cultures containing special nutrients and growth factors. Responding to these substances, the endometrial stem cells adopted the characteristics of in the pancreas that produce insulin. Over the course of a three-week incubation process, the endometrial stem cells took on the shape of beta cells and began to make proteins typically made by beta cells. Some of these cells also produced insulin.

After a meal, the body breaks food down into components like the , which then circulates in the blood. In response, beta cells release insulin, which allows the body's cells to take in the circulating glucose. In this study, Taylor and his team exposed the mature stem cells to glucose and found that, like typical beta cells, the responded by producing insulin. The team then injected with the mature, insulin-making stem cells. The mice had few working beta cells and very high levels of blood glucose.

Mice that did not receive the stem cell therapy continued having high , developed cataracts and were lethargic. In contrast, mice that received the cell therapy were active and did not develop cataracts, but the animals' blood sugar levels remained higher than normal.

Taylor said that the next step in the research will be to verify how long this treatment remains effective. "We will also investigate how changing the nutrient bath or increasing the dose of injected cells could make this treatment more effective," he said. "Endometrial stem cells might prove most useful for Type 1 diabetes, in which the immune system destroys the body's own insulin-producing cells. As a result, insulin is not available to control blood glucose levels."

Explore further: Uterine stem cells used to treat diabetes in mice

More information: Citation: Molecular Therapy doi:10.1038/mt.2011.173

Related Stories

Uterine stem cells used to treat diabetes in mice

August 31, 2011

(Medical Xpress) -- Researchers funded by the National Institutes of Health have converted stem cells from the human endometrium into insulin-producing cells and transplanted them into mice to control the animals’ diabetes.

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.