Scientists use uterine stem cells to treat diabetes

Yale researchers use uterine stem cells to treat diabetes
This is a slide of insulin-producing cells. Credit: Hugh Taylor, Yale University

Controlling diabetes may someday involve mining stem cells from the lining of the uterus, Yale School of Medicine researchers report in a new study published in the journal Molecular Therapy. The team treated diabetes in mice by converting cells from the uterine lining into insulin-producing cells.

The endometrium or uterine lining, is a source of . These cells generate uterine tissue each month as part of the menstrual cycle. Like other stem cells, however, they can divide to form other kinds of cells.

The Yale team's findings suggest that endometrial stem cells could be used to develop insulin-producing islet cells, which are found in the pancreas. These could then be used to advance the study of islet cell transplantation to treat people with diabetes.

Led by Yale Professor Hugh S. Taylor, M.D., the researchers bathed endometrial stem cells in cultures containing special nutrients and growth factors. Responding to these substances, the endometrial stem cells adopted the characteristics of in the pancreas that produce insulin. Over the course of a three-week incubation process, the endometrial stem cells took on the shape of beta cells and began to make proteins typically made by beta cells. Some of these cells also produced insulin.

After a meal, the body breaks food down into components like the , which then circulates in the blood. In response, beta cells release insulin, which allows the body's cells to take in the circulating glucose. In this study, Taylor and his team exposed the mature stem cells to glucose and found that, like typical beta cells, the responded by producing insulin. The team then injected with the mature, insulin-making stem cells. The mice had few working beta cells and very high levels of blood glucose.

Mice that did not receive the stem cell therapy continued having high , developed cataracts and were lethargic. In contrast, mice that received the cell therapy were active and did not develop cataracts, but the animals' blood sugar levels remained higher than normal.

Taylor said that the next step in the research will be to verify how long this treatment remains effective. "We will also investigate how changing the nutrient bath or increasing the dose of injected cells could make this treatment more effective," he said. "Endometrial stem cells might prove most useful for Type 1 diabetes, in which the immune system destroys the body's own insulin-producing cells. As a result, insulin is not available to control blood glucose levels."

More information: Citation: Molecular Therapy doi:10.1038/mt.2011.173

Related Stories

Uterine stem cells used to treat diabetes in mice

Aug 31, 2011

(Medical Xpress) -- Researchers funded by the National Institutes of Health have converted stem cells from the human endometrium into insulin-producing cells and transplanted them into mice to control the animals’ diabetes.

The new source of islet cells

Oct 25, 2007

The shortage of islet cells limits the development of islet transplantation. One new approach was reported in the October 21 issue of the World Journal of Gastroenterology because of its great significance in enhancing the ou ...

Recommended for you

Heart's own immune cells can help it heal

23 minutes ago

(Medical Xpress)—The heart holds its own pool of immune cells capable of helping it heal after injury, according to new research in mice at Washington University School of Medicine in St. Louis.

Making lab-grown tissues stronger

33 minutes ago

Lab-grown tissues could one day provide new treatments for injuries and damage to the joints, including articular cartilage, tendons and ligaments.

The 'ultimate' stem cell

1 hour ago

In the earliest moments of a mammal's life, the developing ball of cells formed shortly after fertilisation 'does as mother says' – it follows a course that has been pre-programmed in the egg by the mother. ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.