New tactic for controlling blood sugar in diabetes contradicts current view of the disease

Increased low-grade inflammation in the body resulting from obesity is widely viewed as contributing to type 2 diabetes. Going against this long-held belief, researchers from Children's Hospital Boston report that two proteins activated by inflammation are actually crucial for maintaining good blood sugar levels – and that boosting the activity of these proteins can normalize blood sugar in severely obese and diabetic mice.

The research, led by Umut Ozcan, MD, in the Division of Endocrinology at Children's, is reported in the October issue of Nature Medicine, published online September 4.

"This finding is completely contrary to the general dogma in the field that low-grade inflammation in obesity causes insulin resistance and ," says Ozcan. "For 20 years, this inflammation has been seen as detrimental, whereas it is actually beneficial."

Ozcan's team previously showed that obesity places stress on the endoplasmic reticulum (ER), a structure in the cell where proteins are assembled, folded and dispatched to do jobs for the cell. This so-called "ER stress" impairs the body's response to insulin in maintaining appropriate blood glucose levels, and is a key link between obesity and type 2 diabetes. Last year, Ozcan and colleagues showed that a that relieves ER stress, called XBP1s, cannot function in obese mice. Earlier this year, they showed that activating XBP1s artificially in the liver normalized high in obese, insulin-resistant type 2 diabetic mice (as well as lean, insulin-deficient type 1 diabetic mice).

The new study shows that a second protein triggered by inflammatory signals, p38 MAPK, chemically alters XBP1s, enhancing its activity -- and that without these alterations, XBP1s cannot function to maintain normal glucose levels. The study further showed that obese mice have reduced p38 MAPK activity, and that re-activating p38 MAPK in the liver reduced their , increased insulin sensitivity and glucose tolerance, and significantly reduced blood glucose levels.

Together, the findings suggest that either increasing p38 MAPK activity -- despite its being an inflammatory signal -- or increasing XBP-1 activity by other means could represent new therapeutic options for diabetes.

The study also suggests a new model for understanding type 2 diabetes, in which may interfere with the ability of people's cells to respond to inflammatory signals. "It may be that inflammatory pathways are not working optimally and there could be a resistance to cytokines which mediates the ," Ozcan says. "This could be a paradigm shift for the field."

The researchers also raise a possible down side in using p38 MAPK inhibitors to treat inflammatory diseases such as Crohn's disease, psoriasis and asthma. "These therapeutic approaches should … be evaluated within the context of our results, and in light of the possibility that inhibition of XBP1s activity also decreases the ability of the cell to cope with the inflammatory conditions," they write.

More information: Research paper: doi:10.1038/nm.2449

Related Stories

A new strategy normalizes blood sugars in diabetes

Mar 28, 2010

Researchers at Children's Hospital Boston have identified a new strategy for treating type 2 diabetes, identifying a cellular pathway that fails when people become obese. By activating this pathway artificially, they were ...

Obesity: Reviving the promise of leptin

Jan 06, 2009

(PhysOrg.com) -- The discovery more than a decade ago of leptin, an appetite-suppressing hormone secreted by fat tissue, generated headlines and great hopes for an effective treatment for obesity. But hopes ...

Apelin hormone injections powerfully lower blood sugar

Nov 04, 2008

By injecting a hormone produced by fat and other tissues into mice, researchers report in the November Cell Metabolism that they significantly lowered blood sugar levels in normal and obese mice. The findings suggest that t ...

Recommended for you

Infant cooing, babbling linked to hearing ability

7 hours ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

8 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

12 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

14 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Zilwiki
not rated yet Sep 04, 2011
How does this explain people with DM2 who are not obese?