Study first to link mitochondrial dysfunction and alpha-Synuclein multiplication in human fibroblasts

A new study in the Journal of Parkinson's Disease shows for the first time the effects of α-Synuclein (α-syn) gene multiplication on mitochondrial function and susceptibility to oxidative stress in human tissue. Mitochondrial dysfunction has been frequently implicated in the neurodegenerative process that underlies Parkinson's disease, but the basis for this has not been fully understood.

Investigators from The Parkinson's Institute in Sunnyvale, CA, evaluated skin fibroblasts from a patient with parkinsonism carrying a triplication in the α-syn gene (SNCA). The cells showed a significant decrease in cell growth compared with healthy controls. "Our results in patient-derived fibroblasts were remarkably similar to overexpression experiments in cell lines and animal models. We detected a decrease in ATP production, a reduction in mitochondrial membrane potential, and a reduction in complex I activity," commented Birgitt Schüle, MD, Assistant Professor, The Parkinson's Institute. Furthermore, these fibroblasts proved to be more sensitive to the effects of the neurotoxin and herbicide paraquat compared to controls.

Mitochondrial function and cellular damage were partially rescued after siRNA knockdown of α-synuclein in after paraquat treatment. "We observed a significant increase in membrane potential and cellular ATP synthesis as well as a decrease in LDH release, supporting the hypothesis that α-synuclein expression levels are directly related to mitochondrial dysfunction," said Dr. Schüle.

According to Dr. William Langston, the Scientific Director and CEO of The Parkinson's Institute, and a co-author on the paper, these results are particularly exciting because they directly link a-syn over-expression and mitochondrial dysfunction in tissue from a parkinsonian patient. "One of the keys to unraveling this incurable and progressive disease is to solve the relationship between a-syn and mitochondrial dysfunction. In these results, we may have the first such link in human tissue," Langston said.

More information: The article is "Mitochondrial Dysfunction in Skin Fibroblasts from a Parkinson's Disease Patient with an alpha-Synuclein Triplication" by Sally K. Mak, Deepika Tewari, James W. Tetrud, William J. Langston, and Birgitt Schüle. Journal of Parkinson's Disease. 1(2). DOI:10.3233/JPD-2011-11205

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Travel restrictions could worsen Ebola crisis: experts

2 hours ago

Travel restrictions could worsen West Africa's Ebola epidemic, limiting medical and food supplies and keeping out much-needed doctors, virologists said Tuesday as the disease continued its deadly spread.

World 'losing battle' to contain Ebola: MSF (Update)

3 hours ago

International medical agency Medecins sans Frontieres said Tuesday the world was "losing the battle" to contain Ebola as the United Nations warned of severe food shortages in the hardest-hit countries.

Mutating Ebola viruses not as scary as evolving ones

3 hours ago

My social media accounts today are cluttered with stories about "mutating" Ebola viruses. The usually excellent ScienceAlert, for example, rather breathlessly informs us "The Ebola virus is mutating faster in humans than in animal hosts ...

War between bacteria and phages benefits humans

4 hours ago

In the battle between our immune systems and cholera bacteria, humans may have an unknown ally in bacteria-killing viruses known as phages. In a new study, researchers from Tufts University, Massachusetts ...

Ebola kills 31 people in DR Congo: WHO

6 hours ago

An outbreak of the Ebola virus in the Democratic Republic of Congo has killed 31 people and the epidemic remains contained in a remote northwestern region, UN the World Health Organization (WHO) said Tuesday.

User comments