Newly discovered reservoir of antibiotic resistance genes

Waters polluted by the ordure of pigs, poultry, or cattle represent a reservoir of antibiotic resistance genes, both known and potentially novel. These resistance genes can be spread among different bacterial species by bacteriophage, bacteria-infecting viruses, according to a paper in the October Antimicrobial Agents and Chemotherapy.

“We found great quantities of bacteriophages carrying different in waters with fecal pollution from pigs, cattle, and ,” says Maite Muniesa of the University of Barcelona, Spain, an author on the study. “We demonstrated that the genes carried by the phages were able to generate resistance to a given antibiotic when introduced into other bacteria in laboratory conditions,” says Muniesa.
 
Although we often think of antibiotic resistance genes as evolving into existence in response to the antibiotics that doctors use to fight human disease and that agribusiness uses to fatten farm animals, microbes had undoubtedly been using both antibiotics and resistance genes to compete with each other for millions of years before antibiotics revolutionized human medicine and resistance genes threatened their efficacy to the point where the World Health Organization considers them to be one of the biggest risks to human health.
 
Thus, the Spanish researchers suspect, based on their study, that these resistance gene reservoirs are the product of microbial competition, rather than pressure from human use of antibiotics. They note that the pasture-fed cattle in their study are not fed antibiotics, and they suggest that even if antibiotic feed additives were banned, new resistance genes might emerge while old ones spread from these reservoirs into bacteria that infect humans.
 
And if resistance genes are being mobilized from these reservoirs, it becomes important to understand how the resistance genes are transmitted from phage to new , in order to develop strategies that could hinder this transmission, limiting the emergence of new resistance genes, says Muniesa.

More information: M. Colomer-Lluch, et al., 2011. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antim. Agents Chemother. 55:4908-4911.

Related Stories

Antibiotic resistance spreads rapidly between bacteria

date Apr 11, 2011

The part of bacterial DNA that often carries antibiotic resistance is a master at moving between different types of bacteria and adapting to widely differing bacterial species, shows a study made by a research ...

Resistant gut bacteria will not go away by themselves

date Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Polar bear droppings advance superbug debate

date Jan 14, 2010

Scientists investigating the spread of antibiotic-resistant superbugs have gone the extra mile for their research - all the way to the Arctic. Researchers writing in the open access journal BMC Microbiology found ...

Antibiotics have long-term impacts on gut flora

date Nov 01, 2010

Short courses of antibiotics can leave normal gut bacteria harbouring antibiotic resistance genes for up to two years after treatment, say scientists writing in the latest issue of Microbiology, published on 3 November.

Recommended for you

A high-fat diet may alleviate mitochondrial disease

date 21 hours ago

Mice that have a genetic version of mitochondrial disease can easily be mistaken for much older animals by the time they are nine months old: they have thinning grey hair, osteoporosis, poor hearing, infertility, ...

Cheek muscles hold up better than leg muscles in space

date 21 hours ago

It is well known that muscles need resistance (gravity) to maintain optimal health, and when they do not have this resistance, they deteriorate. A new report published in the July 2015 issue of The FASEB Journal, however, sugges ...

Sialic acid: A key to unlocking brain disorders

date Jun 30, 2015

A new report published in the July 2015 issue of The FASEB Journal suggests that a common molecule found in higher animals, including humans, affects brain structure. This molecule may play a significant role in how brain ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.