Study brings secrets of brain cell communication closer

October 5, 2011

(Medical Xpress) -- Researchers at The University of Queensland's Queensland Brain Institute (QBI) have taken a significant step towards unravelling the mechanism by which communication between brain cells occurs.

Findings from a study just published in Nature Communications reveals that the (fat) from the membranes of controls the movement of vesicles containing called neurotransmitters.

QBI's Associate Professor Frederic Meunier, who led the study, says these findings were made possible through experimentation with very selective compounds affecting the membrane.

“Our findings explain how minute changes in the lipid composition of our neurons can have a dramatic effect on the way these cells communicate with each other in the brain,” he says.

“We found that the lipid phosphatidylinositol(4,5)bisphosphate orchestrates the mobilization and movement of secretory vesicles towards the plasma membrane of neurosecretory cells.”

According to Associate Professor Meunier, a better understanding of the mechanism underpinning neurotransmitter release will aid scientists' ongoing fight against the plethora of diseases affecting neuronal communication in the brain.

“Changes in lipid composition have already been shown to be a factor contributing to the development of dementia in Alzheimer's disease,” he says.

“We hope that developing novel compounds targetting the fat lipid composition of biological membranes could ultimately help in the treatment of such disorders.”

Explore further: More brain research suggests 'use it or lose it'

Related Stories

More brain research suggests 'use it or lose it'

February 6, 2008

Queensland Brain Institute (QBI) scientists have found another important clue to why nerve cells die in neurodegenerative diseases, based on studies of the developing brain.

Skywalker ensures optimal communication between neurons

April 1, 2011

Patrik Verstreken (VIB/K.U.Leuven, Belgium) has discovered the mechanism that ensures neurons can continue to send the right signals for long consecutive periods - a process that is disrupted in neurological diseases such ...

New route to map brain fat

May 4, 2011

Mapping the fat distribution of the healthy human brain is a key step in understanding neurological diseases, in general, and the neurodegeneration that accompanies Alzheimer's disease in particular. Antonio Veloso and colleagues, ...

Bees yield clues to unlocking brain disorders

June 2, 2011

(Medical Xpress) -- Queensland Brain Institute researchers are a step closer to unlocking the mysteries of disorders like schizophrenia and autism – through peering into the brains of bees.

Understanding the link between HIV and dementia

June 29, 2011

(Medical Xpress) -- HIV can hide out in the brain, protected from the immune system and antiviral drugs, Dr. Lachlan Gray and his colleagues at Monash University and the Burnet Institute have found.

Recommended for you

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.