Specialized motor proteins help control immune activation

October 7, 2011
Figure 1: Following activation, a TCR-MC (white arrow) travels along microtubules of the cytoskeleton (green), making its way from the periphery to the cSMAC (time scale, seconds). Credit: 2011 Elsevier Inc.

Specialized immune cells called T cells can recognize threats and induce immune responses through T cell receptors (TCRs), but these receptors do not act alone. Multiple receptors gather together at the cell surface to cooperatively switch on T cells. “The minimum unit for triggering T lymphocyte activation is known as the TCR microcluster [TCR-MC],” explains Takashi Saito of the RIKEN Research Center for Allergy and Immunology in Yokohama. “These are the key structure for T cells to recognize antigens and become activated.”

At the interface between and the antigen-presenting that switch them on, TCR-MCs accumulate at a structure called the central supramolecular activation cluster (cSMAC). Now, research from Saito and colleagues has revealed unexpected insights into how this accumulation occurs. 

Saito and his team were the first to characterize TCR-MC function, but they were uncertain how these clusters make their way from the periphery to the core of the cSMAC. To understand this phenomenon, they performed a series of experiments in which T cells were placed on an artificial lipid layer that mimics the membrane of an antigen-presenting cell, allowing them to microscopically visualize activation-related events at the T .

Cellular structures are reinforced by protein fibers that form a network called the cytoskeleton, and Saito and colleagues revealed that TCR-MC movement is mediated by dynein, a ‘motor protein’ that shuttles cargos along these fibers. “We knew lymphocyte activation was regulated through the cytoskeleton,” he says. “But it was most surprising that TCR complexes are physically associated with dynein and that their movement is mediated by assembling with this complex.”

Upon TCR activation, the dynein-facilitated movement drags TCR-MCs laterally along the surface of the membrane towards the cSMAC (Fig. 1), a function previously unseen for this motor protein. Pharmacological inhibition of dynein strongly impaired migration of TCR-MCs and undermined their assembly within the cSMAC, as did the selective reduction of a key subunit of the dynein complex.

Intriguingly, the same treatments that impaired TCR-MC migration also enhanced T cell activation. Saito and colleagues therefore concluded that once these clusters reach the center of the cSMAC, they become internalized within the cell and thereby taken out of action. Saito hopes to exploit this effect by learning how the TCR-MC-dynein complex is assembled. “It would be ideal if we had a specific inhibitor of this assembly,” he says, “which could lead to stronger immune status with enhanced activation of T .”

Explore further: Direct proof of how T cells stay in 'standby' mode

More information: Hashimoto-Tane, A., et al. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 34, 919–931 (2011).

Yokosuka, T., et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nature Immunology 6, 1253–1262 (2005).

Related Stories

Direct proof of how T cells stay in 'standby' mode

May 5, 2011

the white blood cells that act as the police of the immune system—are in what immunologists call a "quiescent state," a sort of standby mode. For years, scientists have wondered if quiescence occurred by default or whether ...

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.