Study identifies specific bacteria which precede autoimmune diabetes

October 28, 2011

A study led by Matej Oresic from VTT Technical Research Centre of Finland suggests that autoimmune diabetes is preceded by diminished gut microbial diversity of the Clostridium leptum subgroup, elevated plasma leptin and enhanced glucose-stimulated insulin secretion.

In collaboration with the DIPP - Finnish and Prediction study, VTT researches have previously found that specific precede early β-cell autoimmunity markers in children who subsequently progress to type 1 . However, the question remained what are the environmental causes and tissue-specific mechanisms leading to these disturbances?

Matej Orešič from VTT Technical Research Centre of Finland and collaborators Eriika Savontaus from the University of Turku, Samuel Kaski from Aalto University and Mikael Knip from the University of Helsinki set out to address this question, and the results were published on October 27, 2011 in PLoS Computational Biology journal.

The team carried out a study using non-obese diabetic (NOD) mice that recapitulated the protocol used in the DIPP clinical study, followed up by independent studies in which NOD mice were studied in relation to the risk of diabetes progression. Researchers found that young female NOD mice that later progress to autoimmune diabetes exhibit the same metabolic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated , upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut of the leptum subgroup.

The elucidation of early metabolic pathways associated with progression to Type 1 diabetes points to novel avenues for early disease prevention. The ongoing efforts of VTT researchers are focused on the potential of specific bacteria from the C. leptum subgroup to help prevent Type 1 diabetes.

This study was supported by the Finnish Funding Agency for Technology and Innovation Tekes, the Seventh Framework Program of the European Community, and Juvenile Diabetes Research Foundation.

The environmental factors and molecular mechanisms leading to Type 1 diabetes are poorly understood and of great public health interest. The incidence of inflammatory and autoimmune diseases is rising faster than for any other major disease, and these diseases are affecting a wide spectrum of the population. The number of new cases of Type 1 diabetes in European children less than 5 years of age is expected to double between 2005 and 2020.

More information: M. Sysi-Aho, A. Ermolov, P. V. Gopalacharyulu, A. Tripathi, T. Seppänen-Laakso, J. Maukonen, I. Mattila, S. T. Ruohonen, L. Vähätalo, L. Yetukuri, T. Härkönen, E. Lindfors, J. Nikkilä, J. Ilonen, O. Simell, M. Saarela, M. Knip, S. Kaski, E. Savontaus, M. Orešič,
Metabolic regulation in progression to autoimmune diabetes, PLoS Comp. Biol. 7 (10), e1002257 (2011). www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002257

Related Stories

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.