New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases

October 11, 2011

Belgian researchers describe a new mechanism to enhance the restoration of the blood flow in ischemic diseases, which are among the leading causes of death worldwide. The team of Massimiliano Mazzone demonstrates that blocking the protein PhD2 in white blood cells accelerates the maturation of blood vessels. This leads to a better blood perfusion to organs that had been deprived from blood supply by ischemia. This might become a new therapeutic approach in ischemic diseases.

Bypassing the occlusion

Mazzone has demonstrated that arteriogenesis (growth of pre-existing connections between distinct blood vessels into functional arteries) can be accelerated by blocking the function of the protein PhD2 in a particular class of . This resulted in wider and functional vessels, which allows the blood to bypass the occlusion and thus offers better blood perfusion. The scientists want to investigate in further detail the therapeutic potential of blocking PhD2 for ischemic diseases.

Blood as supplier of vital substances

Every organ in our body needs enough oxygen and other vital substances in order to function properly. Our blood takes care of the transport throughout our body to the different organs. It also removes toxic products. A lower - or no - blood perfusion to a certain organ, e.g. through an of a blood vessel, endangers this organ and can cause irreversible damage after a while. This is what happens in ischemic diseases, which can lead to heart attacks and strokes. The challenge is to restore the blood flow as soon as possible to avoid damage of the organs.

Natural processes to prevent ischemic tissue damage include arteriogenesis. This is essential to obtain blood vessels that are wide and 'mature' enough for a good blood stream. Enhancing this process receives a lot of attention as a to avoid by .

Explore further: Rogue blood cells may contribute to post-surgery organ damage

Related Stories

Rogue blood cells may contribute to post-surgery organ damage

June 26, 2011

A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected ...

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.