New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases

Belgian researchers describe a new mechanism to enhance the restoration of the blood flow in ischemic diseases, which are among the leading causes of death worldwide. The team of Massimiliano Mazzone demonstrates that blocking the protein PhD2 in white blood cells accelerates the maturation of blood vessels. This leads to a better blood perfusion to organs that had been deprived from blood supply by ischemia. This might become a new therapeutic approach in ischemic diseases.

Bypassing the occlusion

Mazzone has demonstrated that arteriogenesis (growth of pre-existing connections between distinct blood vessels into functional arteries) can be accelerated by blocking the function of the protein PhD2 in a particular class of . This resulted in wider and functional vessels, which allows the blood to bypass the occlusion and thus offers better blood perfusion. The scientists want to investigate in further detail the therapeutic potential of blocking PhD2 for ischemic diseases.

Blood as supplier of vital substances

Every organ in our body needs enough oxygen and other vital substances in order to function properly. Our blood takes care of the transport throughout our body to the different organs. It also removes toxic products. A lower - or no - blood perfusion to a certain organ, e.g. through an of a blood vessel, endangers this organ and can cause irreversible damage after a while. This is what happens in ischemic diseases, which can lead to heart attacks and strokes. The challenge is to restore the blood flow as soon as possible to avoid damage of the organs.

Natural processes to prevent ischemic tissue damage include arteriogenesis. This is essential to obtain blood vessels that are wide and 'mature' enough for a good blood stream. Enhancing this process receives a lot of attention as a to avoid by .

Provided by Flanders Institute for Biotechnology

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Rogue blood cells may contribute to post-surgery organ damage

Jun 26, 2011

A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected ...

Stem cell therapy grows new blood vessels

Apr 06, 2009

Research led by David Hess of the Robarts Research Institute at The University of Western Ontario has identified how to use selected stem cells from bone marrow to grow new blood vessels to treat diseases such as peripheral ...

New therapy could preserve vessel function after heart attack

Sep 10, 2007

Scientists have identified the process that causes blood vessels to constrict during and after a heart attack. They've also demonstrated that delivering a vital molecule that is depleted during this process directly to those ...

Recommended for you

The impact of bacteria in our guts

17 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

18 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

19 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments