Novel therapeutic target identified to decrease triglycerides and increase 'good' cholesterol

Researchers at NYU Langone Medical Center today announce findings published in the October 20 issue of Nature that show for the first time the inhibition of both microRNA-33a and microRNA-33b (miR-33a/b) with chemically modified anti-miR oligonucleotides markedly suppress triglyceride levels and cause a sustained increase in high density lipoprotein cholesterol (HDL-C) "good" cholesterol.

"The discovery of microRNAs in the last decade has opened new insights for up new avenues for the development of therapies targeted at these potent regulators of gene pathways," said lead author Kathryn Moore, PhD, associate professor in the Department of Medicine, The Leon H. Charney Division of Cardiology and The Marc and Ruti Bell and Disease Program at NYU Langone Medical Center. "The current study is the first to show that inhibition of miR-33a, as well as miR-33b which is only found in larger mammals can suppress plasma triglyceride levels and increase circulating levels of HDL-C. This study highlights the benefits of modulating miR-33a/b and its downstream for the treatment of conditions that increase cardiovascular disease risks, such as dyslipidemias and ."

Metabolic syndrome is a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes. Cholesterol is a growing public concern worldwide characterized by an increase in triglycerides, decrease in plasma HDL-C, obesity and resistance to insulin that can lead to both and diabetes.

Recent studies have indicated miR-33a/b regulate genes involved in cholesterol and fatty acid metabolism pathways. miR-33a/b strongly represses the cholesterol transporter ABCA1, resulting in decreased generation of HDL-C and reverse cholesterol transport. In addition, miR-33a/b also inhibit key genes involved in fatty acid metabolism resulting in the accumulation of triglycerides. The ability to inhibit miR-33a/b to reverse these events provides a novel therapeutic approach to correct dyslipidemia and metabolic syndrome.

"This study represents a significant advance from our proof-of-concept studies in mice showing that anti-miR-33 can both raise HDL and improve existing atherosclerotic vascular disease," said Katey Rayner, PhD in the Department of Medicine at NYU Langone Medical Center and co-author of the study. "These exciting results now bring the use of miR-33 inhibitors one step closer to the clinic."

Related Stories

New pathway discovered in cellular cholesterol regulation

May 13, 2010

Researchers at two laboratories at NYU Langone Medical Center have collaborated to identify a tiny micro-RNA, miR-33, that regulates key genes involved in cellular cholesterol transport. The study, published online May 13, ...

Recommended for you

Team untangles the biological effects of blue light

1 hour ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

2 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

Scientists unravel the mystery of a rare sweating disorder

2 hours ago

An international research team discovered that mutation of a single gene blocks sweat production, a dangerous condition due to an increased risk of hyperthermia, also known as heatstroke. The gene, ITPR2, controls a basic ...

User comments