Tuberculosis bacterium's outer cell wall disarms the body's defense to remain infectious

October 3, 2011 by Emily Caldwell

The bacterium that causes tuberculosis has a unique molecule on its outer cell surface that blocks a key part of the body's defense. New research suggests this represents a novel mechanism in the microbe's evolving efforts to remain hidden from the human immune system.

Researchers found that the has a molecule on its outer surface called lipomannan that can stop production of an important protein in the body's immune cells that helps contain TB infection and maintain it in a latent state. This protein is called (TNF). When TNF is not produced in sufficient quantities, the TB bacterium can grow unchecked and cause an uncontrolled active infection inside and outside of the lungs.

"There are several unique components on the Mycobacterium tuberculosis outer cell wall that help it sneak into the lung relatively unnoticed," said Larry Schlesinger, professor and chair of the Department of and Immunity at Ohio State University and senior author of the study. "The more we can learn about how these cell wall structures influence the human immune response, the closer we can get to developing a more effective strategy to treat or even prevent an active ."

Lipomannan resembles a tree branch sprinkled with smaller protruding from the outer of the bacterium. The findings show that lipomannan can block TNF production at the microRNA level. MicroRNAs are small segments of RNA that regulate -- or fine-tune -- a gene's protein-building function.

To date, microRNAs have been implicated most frequently in the development of cancer. Schlesinger said this research is among the first studies to show that can influence microRNA activation in and is the first to explore how microRNAs regulate the macrophage to Mycobacterium tuberculosis.

Macrophages are first-responder cells in the immune response. They eat TB at the point of infection in the lung and then normally activate molecules that make pieces of the bacteria visible to infection-fighting warriors, triggering an eventual T-cell response to come to the macrophages' aid.

The research is published this week in the online early edition of the Proceedings of the National Academy of Sciences.

About 2 billion people worldwide are thought to be infected with TB bacteria. People who are infected can harbor the bacterium without symptoms for decades, but an estimated one in 10 will develop active disease characterized by a chronic cough and chest pain. Both active and latent infections are treated with a combination of antibiotics that patients take for at least six months, and such treatment is becoming less effective with more drug-resistant bacterial strains.

Schlesinger and colleagues conducted the study comparing lipomannans from two types of bacteria -- a virulent strain of and a harmless strain called Mycobacterium smegmatis, which is often used as a control bacterium in TB research.

Many of these same researchers, led by Schlesinger, had previously isolated the lipomannans from each type of bacterial cell's surface and used powerful biochemical analyses to characterize the significance of the lipomannans' structural differences. In a study published recently in the Journal of Biological Chemistry, the group reported on how the surface structures on virulent TB bacteria lowered the response of a specific T-cell that typically gets recruited to fight tuberculosis.

In this newer study, the scientists compared how the structures affected the production of TNF in primary human macrophage culture experiments.

They first established that human macrophages respond differently to the two different types of bacteria lipomannans after 24 hours of exposure. Lipomannan from the virulent TB bacterium produced significantly less TNF than lipomannan from the M. smegmatis bacterium.

Though the study showed that the harmless cells increase production of TNF through a well-known receptor pathway as expected, the virulent TB bacteria did not make use of that receptor pathway. This supported the concept that the pathogenic TB bacterium has figured out another way to block the TNF protein in its quest to keep the immune system guessing, said Schlesinger, also the director of Ohio State's Center for Microbial Interface Biology.

A single microRNA can affect the production of hundreds of proteins, and the process of identifying those relationships is ongoing. However, two microRNAs in this study were known to be relevant for their connections to genes and proteins already established as players in the immune response to : miR-125b and miR-155.

Biochemical and genetic experiments showed that macrophages stimulated with lipomannan from TB bacteria had enhanced expression of miR-125b, effectively inhibiting the production of TNF. In contrast, the lipomannan from the harmless bacteria had enhanced expression of miR-155, which regulates other compounds in a way that stimulates TNF production.

Researchers' experimental manipulation to lower the expression of miR-125b in macrophages increased production of TNF in response to the lipomannan, further confirming that this regulation of TNF occurred at the microRNA level, Schlesinger said.

"This really speaks to the power of the tuberculosis bacterium to adapt to the human host," he said. "It has had centuries to develop a sophisticated way to deal with its encounter with the human. Fortunately, genomic technology is allowing us to identify microRNAs more and more rapidly, which might allow us to catch up with the TB bacterium and figure out a way to outsmart it."

Related Stories

Recommended for you

The 'love hormone' may quiet tinnitus

September 23, 2016

(HealthDay)—People suffering from chronic ringing in the ears—called tinnitus—may find some relief by spraying the hormone oxytocin in their nose, a small initial study by Brazilian researchers suggests.

Bile acid uptake inhibitor prevents NASH / fatty liver in mice

September 21, 2016

Drugs that interfere with bile acid recycling can prevent several aspects of NASH (nonalcoholic steatohepatitis) in mice fed a high-fat diet, scientists from Emory University School of Medicine and Children's Healthcare of ...

New therapeutic target for Crohn's disease

September 20, 2016

Research from the Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a promising new target for future drugs to treat inflammatory bowel disease (IBD). The study, published today in Cell Reports, also indicates ...

Mosquitoes, Zika and biotech regulation

September 19, 2016

In a new Policy Forum article in Science, NC State professor Jennifer Kuzma argues that federal authorities are missing an opportunity to revise outdated regulatory processes not fit for modern innovations in biotechnology, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.