X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus

October 19, 2011

Scientists at Cold Spring Harbor Laboratory (CSHL) have solved part of a puzzle concerning the relationship between changes in the strength of synapses – the tiny gaps across which nerve cells in the brain communicate – and dysfunctions in neural circuits that have been linked with drug addiction, mental retardation and other cognitive disorders.

A team led by CSHL Professor Linda Van Aelst has pieced together essential steps in a signaling cascade within excitatory that explains a key phenomenon called longterm depression, or LTD. The "depression" in question has nothing to do with the human illness with that name. Rather, it refers to a tamping-down of the strength of individual – what scientists call synaptic plasticity.

The mechanism behind LTD is called endocytosis. It involves a retraction of receptors where neurotransmitters can "dock." Van Aelst and colleagues have demonstrated how LTD works following activation of a class of receptors called group I metabotrobic glutamate receptors, or mGluRs.

It was known that longterm depression mediated by mGluRs depended in part on the rapid synthesis of specific proteins. Yet the identity of these proteins had largely remained a mystery. The CSHL scientists have now shown that locally rapid production of a protein called oligophrenin 1 (OPHN1) follows activation of group I mGluRs. OPHN1 in turn was shown to mediate LTD in hippocampal nerve cells, by interacting with yet another protein called EndophilinA2/3.

The result of this cascade of intracellular signals was dramatic: persistent removal of AMPA-type receptors at the excitatory synapse, and the onset of LTD. When rapid production of OPHN1 was blocked, mGluR-dependent LTD did not occur. These findings appear online today ahead of print in the journal Neuron.

Van Aelst explained the significance of the finding. "OPHN1 has two important functions that we know about. One is early in development, after synapses have appeared in the emerging nervous system. In this phase, OPHN1 in concert with other factors stabilizes receptors at synapses, and thus is essential in maintaining the structure of these essential features of neural circuitry.

"Our new findings show another vital role for OPHN1, later in development and into maturity. We assume that in response to behavioral stimuli – we aren't yet sure what kind – mGluRs are activated, setting off the series of steps that we identified: rapid upregulation of OPHN1, which binds to EndophilinA2/3, which in turn mediates the long-term removal of AMPA receptors."

OPHN1 is known to be associated with X-linked and with other cognitive and behavioral deficits. The team hypothesizes that OPHN1-related changes in plasticity such as those described in their new work may be causally related to such pathology. They are investigating this possibility in their current work.

Explore further: Scientists reveal molecular sculptor of memories

More information: "Rapid Synthesis of the X-linked Mental Retardation Protein OPHN1 Mediates mGluR-Dependent LTD through Interaction with the Endocytic Machinery" appears online ahead of print October 19 in Neuron.

Related Stories

Scientists reveal molecular sculptor of memories

September 26, 2011

Researchers working with adult mice have discovered that learning and memory were profoundly affected when they altered the amounts of a certain protein in specific parts of the mammals’ brains.

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 20, 2011
I wonder about the implications of this research on the effects of memory. One's ability to recall is only as good as what the neural connection is strong and stable. A deficit in being able to maintain the strength of synaptic connections would have implications on how well one is able to form stable memories (both long-term and short-term) in the first place. And yes, it is possible to have a memory of having remembered something specific, but to have lost the memory of what that something consisted of - even if you have previously retained the original memory for quite some time. I would posit that, at the time of such a type of 'original' memory loss, connections become unstable and break. Perhaps the above article has found the reason why this happens. DH66

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.